

Simplifying effort estimation based on Use Case Points

	
by	 	 M.	 Ochodek,	 J.	 Nawrocki,	 K.	 Kwarciak	
	
	
pre-‐print	 submitted	 to:	
Information and Software Technology

	
	
	
	
Please cite as:
	
Ochodek,	 M.,	 Nawrocki,	 J.,	 &	 Kwarciak,	 K.	 (2011).	 Simplifying	 effort	 estimation	 based	 on	 Use	
Case	 Points.	 Information	 and	 Software	 Technology,	 53(3),	 200-‐213,	 	
doi:	 http://dx.doi.org/10.1016/j.infsof.2010.10.005.	
	
	
	
Bibtex	 entry:	

@article{Ochodek2011200,
title = "Simplifying effort estimation based on Use Case Points",
journal = "Information and Software Technology",
volume = "53",
number = "3",
pages = "200--213",
year = "2011",
issn = "0950-5849",
doi = "http://dx.doi.org/10.1016/j.infsof.2010.10.005",
author = "M. Ochodek and J. Nawrocki and K. Kwarciak"
}

	
	
	
	
	
	

Simplifying Effort Estimation Based on Use Case Points✩

M. Ochodeka,∗, J. Nawrockia, K. Kwarciaka

aPoznan University of Technology, Institute of Computing Science
ul. Piotrowo 2, 60-965 Poznań, Poland

Abstract

Context: The Use Case Points (UCP) method can be used to estimate software development effort based on a use-
case model and two sets of adjustment factors relating to the environmental and technical complexity of a project.
The question arises whether all of these components are important from the effort estimation point of view.

Objective: This paper investigates the construction of UCP in order to find possible ways of simplifying it.
Method: The cross-validation procedure was used to compare the accuracy of the different variants of UCP (with

and without the investigated simplifications). The analysis was based on data derived from a set of 14 projects for
which effort ranged from 277 to 3593 man-hours. In addition, the factor analysis was performed to investigate the
possibility of reducing the number of adjustment factors.

Results: The two variants of UCP – with and without unadjusted actor weights (UAW) provided similar prediction
accuracy. In addition, a minor influence of the adjustment factors on the accuracy of UCP was observed. The results
of the factor analysis indicated that the number of adjustment factors could be reduced from 21 to 6 (2 environmental
factors and 4 technical complexity factors). Another observation was made that the variants of UCP calculated based
on steps were slightly more accurate than the variants calculated based on transactions. Finally, a recently proposed
use-case-based size metric TTPoints provided better accuracy than any of the investigated variants of UCP.

Conclusion: The observation in this study was that the UCP method could be simplified by rejecting UAW; calcu-
lating UCP based on steps instead of transactions; or just counting the total number of steps in use cases. Moreover,
two recently proposed use-case-based size metrics Transactions and TTPoints could be used as an alternative to UCP
to estimate effort at the early stages of software development.

Keywords: Use Case Points, software cost estimation, use cases, use-case transactions, TTPoints

1. Introduction

Software effort estimation is one of the key aspects
of successful project management. If an unrealistic
assumption about the development cost is made, the
project is in danger. Both underestimated and overesti-
mated effort is harmful. Underestimation leads to a situ-
ation where a project’s commitments cannot be fulfilled
because of a shortage of time and/or funds. Overesti-
mation can result in the rejection of a project proposal,
which otherwise would be accepted and would create
new opportunities for the organization.

✩This research project operated within the Foundation for Polish
Science Ventures Programme co-financed by the EU European Re-
gional Development Fund.
∗Corresponding author
Email addresses: mochodek@cs.put.poznan.pl

(M. Ochodek), jnawrocki@cs.put.poznan.pl (J. Nawrocki),
kkwarciak@cs.put.poznan.pl (K. Kwarciak)

Unfortunately, effort estimation at the early stages of
software development is a challenge. Firstly, very little
is known about the project. Secondly, there is a threat
that the project will not be accepted for further devel-
opment, so limited resources can be spent on effort es-
timation. Thus, there is a trade-off between the level of
estimation error and the resources assigned to the esti-
mation activities (typically, the smaller the estimation
error the bigger the estimation cost associated with ac-
quiring knowledge about the project at hand).

In this context two kinds of research could be useful:

• simplifying effort estimation methods without
compromising their accuracy;

• making effort estimation more accurate without in-
creasing the time and money spent on effort esti-
mation.

Typical inputs available at early stages of software

Preprint submitted to Information and Software Technology September 14, 2015

development are functional requirements, which de-
scribe what a system is expected to do. These kinds of
requirements can be used to measure the size of a sys-
tem, and estimate its development effort.

The idea of functional size measurement (FSM)
was introduced by Allan Albrecht [1], who proposed
a method called Function Point Analysis (FPA). Since
the introduction of the method, its construction has
been broadly discussed and frequently questioned (see,
e.g., [2, 3, 4, 5, 6]). Nevertheless, it still remains one of
the most popular FSM methods, and since 1986, it has
been maintained by a non-profit organization called the
International Function Point User Group (IFPUG).

Albrecht’s FPA method stimulated evolvement of
other FSM methods, e.g., Mark II Function Points pro-
posed by Symons [7], COSMIC [8], or Use Case Points1

(UCP) introduced by Karner [9].
The latter method is especially valuable in the con-

text of early size measurement and effort estimation,
because it employs use cases as an input. Use cases,
proposed by Jacobson [10, 11], are a popular form of
representing functional requirements (according to the
survey conducted by Neill and Laplante in 2003 [12],
50% of projects have their functional requirements pre-
sented as scenarios or use cases). They are also avail-
able in the early stages of software development.

The mechanism of the Use Case Points method was
inspired by both Albrecht’s FPA [1] and MK II Func-
tion Points [7], and since its introduction many vari-
ants of the method have been proposed, e.g., Use Case
Size Points (USP) and Fuzzy Use Case Size Points
(FUSP) [13]; UCPm [14]; and the adapted version for
incremental large-scale projects [15].

As use cases are gaining popularity also the UCP
method (and its derivatives) are getting more popu-
lar. However, some people pointed out problems con-
cerning the construction of the method (differences in
use case models [16, 17], assessment of the use-case-
model complexity [13, 17], assessment of adjustment
factors [14, 17, 18], and involvement of calculations
that are based on algebraically inadmissible scale-type
transformations [18, 19]). Therefore, the question arises
whether the method is well designed. Maybe it could be
simplified without loosing much of its accuracy.

1It is not clear whether UCP is a size measure or a software es-
timation method. Some sub-components of UCP (presented in Sec-
tion 2.2) such as UUCW, UAW, and UUCP could be clearly treated
as functional size measures. However, when UUCP is multiplied by
TCF and EF, it is no longer clear whether it represents size of the sys-
tem or its predicted development effort. (The environmental factors
represent commonly used cost drivers.)

This question is even more important in the context
of recently proposed use-case-based size metrics, i.e.,
Transactions [20], and TTPoints [21]. These metrics
seem simpler than UCP.

Therefore, the goal of this study is to analyze the con-
struction of the UCP method, investigate the influence
of its components on the accuracy of the method, and
propose possible simplifications.

The paper is organized as follows. The next section
provides a brief introduction to use cases and the UCP
method. Section 3 presents a set of projects used in this
study as a historical database. Section 4 describes the
research method that was used to evaluate the estima-
tion accuracy of the different variants of UCP and other
use-case-based size metrics. In the following sections
components of UCP are analyzed: actors complexity –
in Section 5; adjustment factors – in Section 6; use-case
complexity – in Sections 7 and 8. The role of transac-
tions in use-case-based effort estimation is investigated
in Section 9. The threats to validity of this study are dis-
cussed in Section 10. The summary and the list of the
most important findings can be found in Section 11.

2. Use Cases and the Use Case Points Method

2.1. Use Cases

The main aim of use cases is to present interaction be-
tween end-user (called actor) and the described system
in terms of user-valued transactions – using natural lan-
guage. Such use cases are called system-level use cases.
(There are also business-level use cases: they describe
interaction between people who cooperate to obtain a
business goal.)

According to the guidelines for writing use cases
[22, 23] the most important parts of a use case are as fol-
lows: name/title which describes the goal, actors partic-
ipating in the use case (people or cooperating systems),
main scenario which is the most common sequence of
steps leading to the goal, and extensions to the main sce-
nario describing alternative steps associated with the oc-
currence of some events. An example of a use case is
presented in Figure 1.

2.2. The Use Case Points Method

In order to obtain UCP for the system one has to start
with the assessment of the complexity of actors and use
cases; and then adjust it with two kinds of factors char-
acterizing the development environment and the techni-
cal complexity of the system under development.

2

UC1: Submit a paper
Level: User
Main actor: Author

Main Scenario:
1. Author chooses the option to submit a paper.
2. System presents the submission form.
3. Author provides necessary information about the paper.
4. System informs Author that the paper was submitted.

Alternatives, Extensions, Exceptions:
3.A. Not all required data was provided.
 3.A.1. System displays error message.
 3.A.2. Go to step 2.

Figure 1: An example of a use case presented as a structured text

2.2.1. Actors Complexity
The first step of the UCP method is to assign each

actor to one of three complexity classes:

• simple: an actor representing a system which com-
municates with other actors using API;

• average: a system actor which communicates
through a protocol (e.g. HTTP, FTP), or a per-
son who interacts with a system through a terminal
console;

• complex: a person who uses graphical user inter-
face (GUI) in order to communicate with a system.

Each actor-complexity class, c, is characterized by two
numbers:

• aWeight(c) = 1 for simple, 2 for average, and 3 for
complex;

• aCardinality(c) is the number of actors assigned to
class c (depends on a described system).

For a given system, the unadjusted actor weights
(UAW) are computed as a sum of products – the weight
of complexity class and the number of actors assigned
to that class (see Equation 1).

UAW =
∑

c∈C
aWeight(c) × aCardinality(c), (1)

C = {simple, average, complex}

2.2.2. Use-Cases Complexity
The second step of the UCP method is the assessment

of use-case complexity. This complexity depends on

the number of transactions identified in each use case.
(Transaction is a set of activities in use-case-scenarios,
which is either performed entirely, or not at all.)

Let #trans(u) denote the number of transactions in
a use case u. Each use case, u, is assigned to complexity
class, cmplx, in the following way:

cmplx(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

simple if #trans(u) < 4,
average if 4 ≤ #trans(u) ≤ 7,
complex if #trans(u) > 7.

Each use-case-complexity class, c, is characterized
by two numbers:

• uWeight(c) = 5 for simple, 10 for average, and 15
for complex;

• uCardinality(c) is the number of use-cases as-
signed to class c (depends on a described system).

For a given system, the unadjusted use case weights
(UUCW) are calculated according to Equation 2.

UUCW =
∑

i∈C
uWeight(c) × uCardinality(c), (2)

C = {simple, average, complex}

2.2.3. Technical and Environmental Factors
The UCP method includes 21 adjustment factors,

which concern the technical complexity of the devel-
oped system (13 technical complexity factors), and the
environment in which it is developed (8 environmental
factors). All the factors are presented in Table 1.

The influence of technical complexity factors (TCF)
are assessed by assigning a value from 0 to 5 to each
of them (the bigger the number is, the greater the extent
a given factor appears with). This value is multiplied by
a weight of a factor and totaled (see Equation 3).

TCF = 0.6 + (0.01 ×
13∑

i=1

TF weighti × valuei) (3)

where

• TF weighti is the weight of the i-th technical com-
plexity factor (see Table 1);

• valuei is the predicted degree of influence of the i-
th technical complexity factor on the project (value
between 0 and 5).

The influence of environmental factors (EF) is as-
sessed in a similar way as in the case of technical com-
plexity factors (see Equation 4).

EF = 1.4 + (−0.03 ×
8∑

i=1

EF weighti × valuei) (4)

3

Table 1: Technical Complexity Factors and Environmental Factors

Technical Complexity Factors

Factor Description Weight

T1 Distributed system 2
T2 Performance 1
T3 End-user efficiency 1
T4 Complex processing 1
T5 Reusable code 1
T6 Easy to install 0.5
T7 Easy to use 0.5
T8 Portable 2
T9 Easy to change 1
T10 Concurrent 1
T11 Security features 1
T12 Access for third parties 1
T13 Special training required 1

Environmental Factors

Factor Description Weight

F1 Familiarity with the standard process 1.5
F2 Application experience 0.5
F3 Object-oriented experience 1
F4 Lead analyst capability 0.5
F5 Motivation 1
F6 Stable requirements 2
F7 Part-time workers -1
F8 Difficult programming language -1

where

• EF weighti is the weight of the i-th environmental
factor (see Table 1);

• valuei is the predicted degree of influence of the
i-th environmental factor on the project (value be-
tween 0 and 5).

2.2.4. Calculating Use Case Points
By adding UAW to UUCW, according to Equation 5,

one obtains unadjusted use case points (UUCP).

UUCP = UAW + UUCW (5)

To obtain use case points (UCP) one has to multiply
UUCP by TCF and EF (see Equation 6).

UCP = UUCP × TCF × EF (6)

2.2.5. Productivity Factor and Effort Estimation
To obtain effort estimation in man-hours one has to

multiply UCP by the productivity factor (PF)2.
The default value for PF proposed by Karner is 20

hours per UCP. Schneider and Winters [26] proposed
a method for determining the initial value of PF. Based
on their experience, they suggested to count the num-
ber of environmental factors F1-F6 which influence is
predicted to be less than 3 and factors F7-F8 which in-
fluence is predicted to be greater than 3. If the counted
total is equal to 2 or less, the default value of 20 h/UCP
should be used. If the total is between 3-4, they sug-
gested using PF equal to 28 h/UCP. If the calculated
number is greater than 4, the value of 36 h/UCP should
be used. (However, in this case the project is regarded
as an extremely risky one.)

2.2.6. Calibrating UCP with Historical Data
Using default values for PF is a necessity if an orga-

nization does not have historical data concerning pro-
ductivity. However, if historical data is available, it
is reasonable to use such data to determine PF for the
project being estimated. After the completion of a sin-
gle project, a post-productivity factor (PostPF) might be
calculated as presented in Equation 7.

PostPF =
ActualEffort

UCP
(7)

3. Characteristics of the Projects

This study is based on an analysis of 14 projects,
which actual effort ranged from 277 to 3593 man-hours.
The brief description of the projects is presented in Ta-
ble 2. The detailed characteristics related to the effort
estimation with UCP are presented in Table 3.

The projects labeled from A to G were developed by
industrial organizations. The projects H to N were de-
veloped at the Poznan University of Technology (PUT).
(All of the projects which origin was marked as ‘U’
were also budgeted; therefore, they remained similar to
the industrial projects in this aspect.)

Because the main data set was heterogeneous we de-
cided to perform the analysis based on the whole data
set and the number of its subsets that seemed homoge-
neous in some aspects.

2The name “Productivity Factor” can be misleading, because
a quotient between effort and size is usually referred as Project De-
livery Rate (PDR) [24]. (Productivity, however, is more often defined
as a quotient between size and effort [25].)

4

The first criterion for choosing candidates for sub-
sets was the origin of a project (subsets Ind and Uni).
The next criteria were the type of application and the
main programming language (subsets Web and Java).
We also defined a small, but highly homogeneous sub-
set ADM. It contained three projects that were con-
ducted at PUT to develop the students’ admission sys-
tem in years 2006-2010. Finally, we decided to perform
a hierarchical clustering analysis3 to find the most simi-
lar projects in respect to their TCFs and EFs. As a result
three small subsets were defined EF1, EF2, and TCF1.

The summary of the data sets considered in this study
is presented in Table 4.

Table 4: The subsets of the main data set considered in this study

ID Description Projects

All All projects A-N (14)
Ind Industrial projects A-G (7)
Uni Projects developed at the university H-N (7)
Web Web applications A, C, D, F-N (12)
Java Projects developed in Java G-N (8)

ADM Students’ admission system at PUT H, I, K (3)
EF1 Projects with similar EFs D, F, N (3)
EF2 Projects with similar EFs H, I, K, M (4)

TCF1 Projects with similar TCFs H, I, M (3)

4. Framework for Analysis of Estimation Accuracy

The accuracy of effort estimation based on each of
the considered size metrics was analyzed according to
the procedure presented in this section.

4.1. Calculation of Use Case Points
The process of calculating UCP (and other size met-

rics) for the projects, consisted of the following steps:

1. Reviewing use cases. All business-level use cases
were rejected (they create a context for user-level
use cases); included and extended use cases were
rejected (as suggested in UCP [9]), but only if they
described the same transaction as the invoking use
case, but at lower level of abstraction. Use cases
that were not implemented or duplicated were also
rejected.

3The goal of hierarchical clustering is to organize a set of obser-
vations into a hierarchy of subsets (hierarchy of clusters) so that ob-
servations in the same cluster are similar to each other. In this study
we used Ward’s algorithm [27] and Euclidean distance. (They can be
used to cluster ordinal data [28].)

2. Counting transactions and steps. Use-case trans-
actions for UCP were identified by a single per-
son, with the use of the method proposed by Ro-
biolo and Orosco [20] (which seems to be com-
pliant with the Karner’s definition of use-case
transaction [9]). In addition, semantic transaction
types were identified [29] for the purpose of the
TTPoints method discussed in Section 9. We also
asked an experienced person, not co-authoring this
paper, to review the transaction counts for the sam-
ple of 50 use cases (20%). Then, the results were
discussed. Although the final transaction-counts
and UUCW were not the same for both persons,
they seemed to be convergent4.

3. Obtaining TCF and EF. The values of the adjust-
ment factors were obtained by surveying partici-
pants of the projects. The final values of TCF and
EF for the project were calculated as (Optimistic +
4 × Average + Pessimistic) / 6.

4. Calculating UCP. It was done according to the pro-
cedure presented in Section 2.2.

4.2. Evaluation of Prediction Accuracy
Each metric should be evaluated in respect to its pur-

pose. In this study we investigated the usefulness of use-
case-based size metrics in the context of software cost
estimation. Therefore, the main criterion for comparing
the size metrics was the accuracy of effort estimation
calculated based on them.

In order to determine the accuracy of effort estima-
tion based on each size metric we followed a cross-
validation procedure [32]. It is a statistical method for
validating a predictive model. The considered set of ob-
servations is divided into two subsets. One of them,
called a training set, is used to construct a prediction
model. The remaining one is used to validate the model.
In this study we used a form of cross-validation called
“leave-one-out” which leaves out a single observation
for the validation purpose at a time.

In the study two following effort predictions models5

4The normalized root mean squared deviation (NRMSD), calcu-
lated as

√
1
n [
∑n

i=1 (x1,i − x2,i)2]/(xmax−xmin), between the number of trans-
actions identified by two raters ranged from 0.10 to 0.15. The inter-
rater agreement in assignment of use cases to complexity classes,
measured as weighted Cohen’s kappa coefficient (κ) [30, 31], could
be interpreted as “almost perfect” [31] (κ ranged from 0.83 to 0.85).

5We did not use the default value of PF equal to 20 h/UCP, because
it can be different for each variant of UCP (it has to be obtained by
calculating the PostPFs for a set of projects). In addition, it can differ
between organizations – at the end Karner proposed the value based
on the projects developed at Objectory. (The observed PostPF for the
projects considered in this study ranged from 3 to 35 – see Table 3.)

5

Table 2: Application domain and basic description of the projects under study. Origin: I – project developed by a software development company;
U – projects developed by university staff and students for the internal usage at the university; S2B – project developed by students for external
organizations. Type: N – application was developed from scratch; C – application was based on existing solution and was tailored for the customer;
E – major enhancement, i.e., strongly simplified version was available (e.g. a prototype).

ID Effort [h] Origin Type Team Technologies Description

Project A 3037 I N 5 ASP.Net, C#, MS SQL DBMS, cus-
tom web-framework

Web-based e-commerce solution.

Project B 1917 I N 4 Delphi, Firebird DBMS Integration of two sub-systems within the ERP scale system.
Project C 1173 I N 8 Python, Django, PostgreSQL Web application for collecting and tracking projects’ metrics.
Project D 742 I C 6 Python, Plone, Zope Web application developed based on existing CMS solution.
Project E 614 I N 4 Delphi, Firebird DBMS Bank system integrating payments into virtual accounts in one real

account.
Project F 492 I C 3 Python, Plone, Zope Content Management System (CMS).
Project G 277 I N 1 Java, PHP, MySQL DBMS, Eclipse

Rich Client Platform (RCP)
Web-based invoices repository with additional standalone client
application.

Project H 3593 U N 8 Java, Oracle DBMS, Hibernate,
GWT-based custom framework,
JSON, OSGi

Backend application for the university admission system (Rich In-
ternet Application).

Project I 1681 U E 8 Java, Oracle DBMS, Apache Struts
1.2, Java Swing

Web-based frontend for the university admission system. Some
parts were re-used from the previous prototype version.

Project J 1344 S2B N 6 ASP.Net, C#, MS SQL DBMS Web-based Customer Relationship Management (CRM) system.
Project K 1220 U N 6 Java, Oracle DBMS, Hibernate,

GWT-based custom framework,
JSON, OSGi

University admission system for foreign students.

Project L 720 S2B N 6 Java, Java Servlets, JSP, Java
Swing, SOAP, MySQL DBMS

Web & standalone application for managing members of the orga-
nization.

Project M 524 U N 6 Java, Hibernate, Axis, PHP, C++ Bibliometric Information System. A system for collecting infor-
mation regarding publications and citations.

Project N 397 U N 3 Java, Apache Struts 2, Hibernate Web-based system supporting the assignment of B.Sc and M.Sc.
theses projects.

were used to estimate effort: single linear regression and
multiple regression.

4.2.1. Ordinary Least Squares Regression (OLS)
Ordinary least squares regression (OLS) is used to

linearly approximate the relationship between a single
dependent variable (e.g., development effort) and one
(or more) independent variables (e.g., size of the sys-
tem). It minimizes the sum of squared distances be-
tween the observed values of the dependent variable,
and the values predicted by the linear approximation.
(For further details refer to [33].)

A single linear regression model for predicting effort
based on the value of the size metric which was used
in this study has a form presented in Equation 8. (The
linear regression equation was constructed in each step
of the cross-validation procedure based on the projects
constituting a training set.)

Effortpi
= βS ize × Size(pi) + β0 (8)

where

• pi is the project for which effort is estimated;

• βS ize is the slope for Size;

• β0 is the constant or intercept (set to 0);

• Size(pi) is the value of the size metric calculated
for the project pi;

4.2.2. Multiple Regression
The purpose of multiple regression is to learn about

the relationship between several independent (or predic-
tor) variables and dependent variable.

In the already presented linear regression model we
considered only one independent variable – the size
metric. The question is whether any additional vari-
ables could be added to the model to improve its ef-
fort prediction capabilities. Therefore, we decided to
use the best subset regression procedure [34] to look
for other candidate-variables that could be incorporated
to the model (among all environment factors, technical
complexity factors, and a factor called team size). This
procedure was performed for each size metric and data
set. The coefficients of the regression model were, then,
calibrated in each step of the cross-validation procedure
based on the projects belonging to a training set (the fac-

6

Table 3: Projects characteristics (T – transactions, identified using stimuli-verb approach proposed by Robiolo and Orosco [20]; S – steps without
reference to other use cases – include and extend relations; number of use cases before the review of the specifications are placed in brackets)

Pr
oj

ec
tA

Pr
oj

ec
tB

Pr
oj

ec
tC

Pr
oj

ec
tD

Pr
oj

ec
tE

Pr
oj

ec
tF

Pr
oj

ec
tG

Pr
oj

ec
tH

Pr
oj

ec
tI

Pr
oj

ec
tJ

Pr
oj

ec
tK

Pr
oj

ec
tL

Pr
oj

ec
tM

Pr
oj

ec
tN

Actual Effort [h] 3037 1917 1173 742 614 492 277 3593 1681 1344 1220 720 514 397

UCP-T 148 55 76 105 63 44 22 304 80 74 89 50 31 95
UCP-S 276 58 113 161 112 90 36 505 162 157 160 90 59 144
UUCP-T 207 90 81 139 97 59 56 319 97 142 89 82 34 115
UUCP-S 387 95 121 214 172 119 91 529 197 302 159 147 64 175
UUCW-T 195 80 75 130 85 50 50 305 85 130 80 70 30 100
UUCW-S 375 85 115 205 160 110 85 515 185 290 150 135 60 160
UCP-T no UAW 139 49 70 98 55 38 20 291 70 67 80 43 27 82

Steps 224 45 69 123 101 67 36 324 109 152 96 69 38 84
Transactions [20] 86 30 33 62 25 17 12 135 34 49 33 27 10 33
TTPoints [29] 137 70 36 52 35 22 15 156 74 56 39 38 28 35

No. of use cases 31 12* 11 19 15 10 10 42 17 26 13 14 6 18
(35) (16) (12) (20) (21) (12) (12) (47) (19) (37) (20) (17) (8) (20)

Simple - T 23 6 7 13 13 10 10 23 17 26 10 14 6 16
Average - T 8 5 4 5 2 0 0 19 0 0 3 0 0 2
Complex - T 0 0 0 1 0 0 0 0 0 0 0 0 0 0
Simple - S 0 9 3 3 4 3 3 4 0 0 2 1 2 6
Average - S 18 1 4 10 5 2 7 15 14 20 5 13 2 10
Complex - S 13 2 4 6 6 5 0 23 3 6 6 0 2 2

No. of actors 4 4 2 3 4 3 2 5 4 4 3 4 2 5
Simple 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Average 0 2 0 0 0 0 0 1 0 0 0 0 2 0
Complex 4 2 2 3 4 3 2 4 4 4 3 4 0 5

TCF∗∗ 0.92 0.75 0.90 0.85 0.82 0.85 0.78 0.94 1.03 0.71 1.05 0.78 0.96 0.90
EF∗∗ 0.78 0.81 1.05 0.89 0.79 0.88 0.51 1.02 0.80 0.73 0.95 0.79 0.96 0.91

Post PF (transactions) 21 35 15 7 10 11 12 12 21 18 14 14 17 4
Post PF (steps) 11 33 10 5 5 5 8 7 10 9 8 8 9 3
Default PF [26] 20 20 20 20 20 20 20 20 20 20 20 20 20 20
∗ One of use cases did not have stimuli in the sense of [20].
∗∗ Results of the surveys conducted within each development team, and aggregated as (Optimistic + 4 × Average + Pessimistic) / 6.

tors chosen for each subset of projects are presented in
Table 5).

There are some issues regarding applying multiple re-
gression that are important for this study. First of all,
one has to be careful to not “overfit” the model to the
data. (It is observed if the model has to many degrees
of freedom, in relation to the amount of data available.)
Therefore, we decided to include only one additional
independent variable at a time, and apply the multiple
regression model only to the sets that contained more
than 4 observations. We also did not apply the multi-
ple regression to the original UCP measure as it already
included technical and environmental factors.

The multiple regression model considered in this
study is presented in Equation 9.

Effortpi
= βS ize × Size(pi)

+ βFactor × Factor(pi) + β0
(9)

where

• pi is the project for which effort is estimated;

• Factor(pi) is the value of the additional factor in-
cluded in the regression model (chosen among the
EFs, TCFs, and team size) for the project pi;

• βS ize is the slope for Size;

• βFactor is the slope for Factor;

• β0 is the constant or intercept;

• Size(pi) is the value of the size metric calculated
for the project pi;

7

4.2.3. The Evaluation Criteria
The next step of the analysis is the evaluation of the

prediction accuracy, which is performed based on the
following criteria [35, 36, 37]:

• MRE – which stands for the magnitude of relative
error. The MRE is calculated for each project in
the data set according to Equation 10. It indicates
the difference between the estimated and the ac-
tual effort in respect to the actual effort. The mean
MRE (MMRE) is used to aggregate the multiple
observations of MRE in the whole data set.

MRE =
|ActEffort − EstEffort|

ActEffort
(10)

• Mean RE – which stands for the mean relative er-
ror. It is calculated for a set of projects according
to Equation 11.

Mean RE =
1
n

∑

i

(ActEfforti − EstEfforti)
ActEfforti

(11)

• Pred(e) = k/n – prediction quality is calculated
on a set of n projects, where k is the number of
projects for which estimation error (MRE) is less
than or equal to e. In this study e was set to 0.25.
Conte et al. [37] suggested that for acceptable es-
timation model, the value of Pred(0.25) should ex-
ceed 0.75.

The interpretation of MRE and Pred criteria is that
the accuracy of an estimation technique is proportional
to the Pred and inversely proportional to the MRE.

The Mean RE helps to investigate the bias of the esti-
mates. If the estimation model is unbiased the value of
the Mean RE should be close to zero (equal number of
over-estimates and under-estimates cancel each other).

For testing the statistical significance of differences
in accuracy between paired samples we used the two-
tailed Wilcoxon signed-rank test with the significance
level α set to 0.05. (However, the results of these tests
should be taken with caution due to their low statistical
power – the issue is discussed later on in Section 10.)

5. Actors Complexity in Use Case Points

Karner included information concerning actors in the
UCP method (UAW, see Section 2.2.1), however the im-
pact of the UAW on the accuracy of the method has not
been investigated empirically.

Moreover, there are at least two problems related to
the calculation of UAW:

• Generalization of actors. A generalization / spe-
cialization relation can be used to show that one or
more actors are a special case of another actor (e.g.,
Senior Analyst can be a specialization of the An-
alyst actor). The number of actors in the use-case
model impacts the calculated UCP. Therefore, gen-
eralized actors should be counted once only [17].

• Additional actors. Analyst can introduce addi-
tional actors, which is often dictated by the prop-
erties of a particular project [14]. For instance,
analyst can introduce a goal-oriented actor, if the
same goal is meaningful for many actors. (E.g., in
the system supporting reviews of scientific papers,
actors like Editor, Reviewer, and Author can be in-
terested in obtaining the goal “read a paper”. To
enable this, a new actor called Reader can be intro-
duced and associated with the “Read a paper” use
case.)

If the UAW was rejected without decreasing accuracy
of UCP it would simplify the method and would elimi-
nate the problems presented above, related to the analy-
sis of actors’ complexity.

Thesis: UAW is negligible from the point of view of
the effort estimation with UCP.

Investigation: In order to investigate the impact
of UAW on the accuracy of effort estimation based on
UCP, we performed the analysis described in Section 4
on the base variant of UCP (UCP-T) and the variant of
UCP with UAW omitted (UCP-T no UAW). The values
of both metrics are presented in Table 3. The results of
the cross-validation analysis are presented in Table 5.

The observed values of MMRE were nearly the same
for both variants of UCP and all of the data sets. The
average MMRE was lower by 0.02 for UCP-T, how-
ever, the lower variability was observed for the UCP
with UAW omitted. None of the null hypotheses about
the equality of median values of MRE could be rejected.

The similar observation was made for the prediction
quality. The average Pred(0.25) was higher by 0.05 in
the case of UCP-T, but lower variability was observed
for the variant of the UCP without UAW.

A minor tendency for overestimation was observed
for both variants of UCP.

Summary: Based on the performed analysis, we ob-
served that UAW had only minor impact on the accuracy
of the effort estimation based on UCP.

8

Table 5: The accuracy of the effort estimation based on the different variants of UCP, Steps, Transactions, and TTPoints

OLS regression Multiple regression OLS regression

Size metric Set MMRE Mean RE Pred(0.25) MMRE Mean RE Pred(0.25) Factor Set MMRE Mean RE Pred(0.25)

UCP-S

All

0.40 -0.15 0.50 - - - -

ADM

0.20 0.02 0.33
UCP-T 0.45 -0.15 0.43 - - - - 0.32 0.03 0.33

UCP-T no UAW 0.44 -0.10 0.36 - - - - 0.39 0.03 0.33
UUCP-S 0.58 -0.30 0.29 0.54 -0.31 0.57 T11 0.16 0.03 1.00
UUCP-T 0.59 -0.33 0.29 0.54 -0.23 0.50 T5 0.29 0.03 0.33
UUCW-S 0.56 -0.27 0.29 0.45 -0.20 0.43 T4 0.19 0.03 1.00
UUCW-T 0.56 -0.28 0.43 0.47 -0.22 0.43 T4 0.36 0.03 0.33

Steps 0.46 -0.20 0.36 0.50 -0.30 0.57 T11 0.22 0.03 0.33
Transactions 0.41 -0.11 0.64 0.53 -0.21 0.57 T5 0.44 0.02 0.33

TTPoints 0.25 -0.13 0.64 0.23 -0.06 0.64 T1 0.12 0.05 0.67

UCP-S

Ind

0.60 -0.28 0.29 - - - -

EF1

0.43 -0.07 0.33
UCP-T 0.61 -0.34 0.14 - - - - 0.52 -0.04 0.33

UCP-T no UAW 0.58 -0.31 0.14 - - - - 0.46 -0.01 0.33
UUCP-S 0.78 -0.41 0.00 0.79 0.16 0.14 T5 0.35 -0.05 0.33
UUCP-T 0.78 -0.48 0.14 0.76 0.12 0.14 T5 0.43 -0.02 0.33
UUCW-S 0.75 -0.38 0.00 0.79 0.16 0.14 T5 0.32 -0.04 0.33
UUCW-T 0.74 -0.45 0.14 0.75 0.11 0.14 T5 0.39 0.00 0.33

Steps 0.68 -0.30 0.00 0.83 -0.26 0.14 T3 0.21 -0.02 0.67
Transactions 0.53 -0.23 0.43 0.86 0.07 0.14 T5 0.33 0.06 0.33

TTPoints 0.25 -0.10 0.57 0.30 0.00 0.57 T1 0.26 0.01 0.33

UCP-S

Uni

0.37 -0.15 0.71 - - - -

EF2

0.19 0.05 0.50
UCP-T 0.50 -0.13 0.43 - - - - 0.30 0.08 0.50

UCP-T no UAW 0.51 -0.07 0.43 - - - - 0.37 0.10 0.25
UUCP-S 0.51 -0.24 0.43 0.35 -0.11 0.71 F3 0.15 0.05 1.00
UUCP-T 0.54 -0.24 0.57 0.28 -0.09 0.71 Team 0.27 0.08 0.50
UUCW-S 0.48 -0.20 0.57 0.24 0.00 0.57 Team 0.18 0.06 1.00
UUCW-T 0.49 -0.18 0.43 0.22 -0.09 0.71 Team 0.34 0.09 0.25

Steps 0.34 -0.14 0.57 0.14 -0.02 1.00 Team 0.20 0.06 0.50
Transactions 0.39 -0.05 0.43 0.14 -0.07 0.86 Team 0.44 0.12 0.25

TTPoints 0.27 -0.16 0.71 0.18 -0.04 0.71 F5 0.15 -0.02 0.50

UCP-S

Web

0.37 -0.18 0.50 - - - -

TCF1

0.30 0.01 0.33
UCP-T 0.44 -0.17 0.58 - - - - 0.47 -0.01 0.00

UCP-T no UAW 0.43 -0.12 0.42 - - - - 0.57 -0.03 0.00
UUCP-S 0.55 -0.32 0.33 0.37 -0.07 0.50 T1 0.19 0.03 1.00
UUCP-T 0.58 -0.34 0.33 0.50 -0.08 0.42 Team 0.36 0.02 0.33
UUCW-S 0.52 -0.29 0.42 0.35 -0.07 0.50 T1 0.23 0.03 0.67
UUCW-T 0.54 -0.29 0.50 0.46 -0.08 0.58 Team 0.45 0.01 0.00

Steps 0.41 -0.21 0.42 0.35 -0.07 0.50 T1 0.27 0.02 0.33
Transactions 0.41 -0.12 0.50 0.59 -0.12 0.58 T5 0.59 0.02 0.00

TTPoints 0.25 -0.12 0.67 0.22 -0.04 0.58 T1 0.10 -0.07 0.67

UCP-S

Java

0.33 -0.12 0.75 - - - -
UCP-T 0.44 -0.11 0.50 - - - -

UCP-T no UAW 0.46 -0.05 0.50 - - - -
UUCP-S 0.57 -0.32 0.38 0.28 -0.09 0.88 T13
UUCP-T 0.61 -0.35 0.50 0.60 0.15 0.50 Team
UUCW-S 0.54 -0.29 0.38 0.26 -0.10 0.75 T13
UUCW-T 0.56 -0.29 0.38 0.55 0.14 0.62 Team

Steps 0.35 -0.17 0.50 0.20 -0.03 0.75 T1
Transactions 0.37 -0.07 0.50 0.52 0.14 0.62 Team

TTPoints 0.26 -0.17 0.75 0.18 -0.09 0.62 F5

9

6. Adjustment Factors in Use Case Points

As presented in Section 2.2.3, there are 13 technical
complexity factors and 8 environmental factors in the
UCP method. Their role is to adjust UUCP to UCP.

There are at least two problems concerning assess-
ment of these factors:

• Lack of standardized (agreed) scale. In the original
UCP method the influence of each adjustment fac-
tor is assessed with the use of 0–5 ordinal scale (see
Section 2.2.3). Although some rules for interpret-
ing this scale have been proposed [18, 38], none
of them have become an agreed standard (i.e., was
reported to be used or validated in other studies).

• Not verified weights of factors. Each factor has
its weight that reflects its general impact on the
project’s complexity. Values of the weights in the
original method were proposed by Karner and his
colleagues based on their experience. Little has
been done so far to empirically evaluate their cor-
rectness.

It has already been reported that different people can
provide different assessments of TCF and EF when they
use the 0–5 ordinal scale [18, 38]. The same problem
was observed for the projects presented in Section 3
(inner-team variability in assessment of TCF and EF for
the projects is presented in Figure 2). Subjectivity in
assessment of the adjustment factors can have a nega-
tive impact on the consistency of a historical projects
database.

Taking into account problems with standardization
of TCF and EF, a more general question arises – what is
the impact of the adjustment factors on the accuracy of
effort estimation with UCP?

Thesis: TCF and EF are negligible from the point of
view of the effort estimation with UCP.

Investigation: To investigate the impact of adjust-
ment factors on the accuracy of UCP, we compared the
accuracy of the effort estimation based on the original
UCP (UCP-T); unadjusted UCP (UUCP-T); and unad-
justed use case weights (UUCW-T). The values of all
metrics are presented in Table 3. The results of the
cross-validation analysis are presented in Table 5.

The differences observed between the average values
of MMRE for the original UCP and two variants that do
not take into account the adjustment factors were mi-
nor. (They were in both cases equal to 0.04 in favour
of UCP-T.) Lower variability was also observed for the
original variant of UCP. However, we were not able to

reject the null hypotheses about the equality of median
values of MRE.

The prediction quality was also similar for all the
compared variants of UCP. The highest average value
of Pred(0.25) was observed for UUCP-T (the value for
UCP-T was lower by 0.01 and for UUCW-T by 0.06).

The UCP-T performed slightly better for more het-
erogeneous subsets of projects. However, the observed
improvement in the accuracy of effort estimation was
still not impressive. Therefore, the question is whether
all 21 factors are really necessary?

The previously discussed observations did not in-
clude the results obtained when the multiple regres-
sion model was used to estimate the effort, which
could be treated as an extremely simplified version
of the adjustment factors. When it was applied to
UUCW-T and UUCP-T the prediction quality visibly
increased. The average values of Pred(0.25) were higher
for UUCW-T and UUCP-T than the value for UCP-T
(by 0.03 and 0.08). Therefore in most cases, a single
additional predictor added to the model was sufficient
to obtain a similar accuracy of effort estimation as in
the case of UCP incorporating 21 adjustment factors.

To further investigate the possibility of reducing the
number of adjustment factors, we performed the factor
analysis6. The goal of the analysis was to find groups
of potentially overlapping factors within TCFs and EFs
that could be substituted for more general factors.

The outcome of the analysis was that the initial
adjustment-factors model including 21 factors could be
substituted by a simpler model incorporating 4 technical
complexity factors and 2 environmental factors.

In the case of technical complexity 4 factors that
should be retained in the model accounted for 84%
of the total variation in TCFs. The following “new”
technical factors could be defined (we used the termi-
nology defined in ISO 9126 [40]):

• Efficiency – this factor relates to the capability
of the software product to provide appropriate
performance, relative to the amount of resources
used, under stated conditions. The main associ-
ated TCFs are “performance” (T2), “end-user ef-
ficiency” (T3), “complex processing” (T4), and
“easy to use” (T7).

• Operability – this factor defines how easy it is to
operate and control the system. The associated

6Factor analysis is a technique used to reduce the number of di-
mensions in the data. It assumes that the observed dependant vari-
ables are linear combinations of some underlying (hypothetical or un-
observable) independent variables – called “factors” [39].

10

A
B

C
D

E
F

H
I

K
M

N

0.6 0.8 1.0 1.2 1.4
TCF

Pr
oj

ec
ts

A
B

C
D

E
F

H
I

K
M

N
0.6 0.8 1.0 1.2 1.4

EF
Pr

oj
ec

ts

A
B

C
D

E
F

H
I

K
M

N

0.6 0.8 1.0 1.2 1.4
TCFxEF

Pr
oj

ec
ts

Figure 2: Box plots presenting differences in assessments of TCF and EF (and their cumulative value TCF×EF) based on the conducted surveys
within the project teams (projects with only one response were not included to the plot)

factors are “easy to install” (T6), “portable” (T8),
“security features” (T11), and “special training re-
quired” (T13). The difficulties in the installation
and configuration of the system are reflected by
factors T6 and T8 (requirements related to porta-
bility could imply that the system will have to be
installed in different environments). The second
aspect relates to the difficulties in operating and
controlling the system (i.e., cumbersome security
procedures or special training required).

• Maintainability – it is the capability of the soft-
ware product to be modified. The main associ-
ated factors are “reusable code” (T5), and “easy
to change” (T9).

• Interoperability – it is defined as the capability of
the software product to interact with one or more
specified systems. The associated factors are “con-
current” (T10), and “access to third parties” (T12).

A similar analysis was performed by Lokan [3] for
general system characteristics (GSC) in FPA. The ini-
tial GSC model containing 14 factors was reduced to
5 factors in that study. Although the technical adjust-
ment factors are slightly different than GSC (TCFs were
adapted from MK II FPA), three of the identified factors
were common for both studies (efficiency, operability,
and interoperability).

The second set of adjustment factors is specific to
UCP. Based on the results of the factor analysis we ob-
served that the initial model including 8 factors could be
substituted by a simpler model containing only 2 more
general factors (these factors accounted for 52% of the
total variation in the EFs):

• Team experience – it relates to the knowledge

and skills of the development team. The associ-
ated factors are “familiarity with the standard pro-
cess” (F1), “application experience” (F2), “object-
oriented experience” (F3), “lead analyst capabil-
ity” (F4)”, and “difficult programming language”
(F8). A minor correlation was also observed for
the environmental factor “motivation” (F5).

• Team cohesion – it accounts for the level of collab-
oration between the project’s stakeholders. The as-
sociated factors are “motivation” (F5), “stable re-
quirements” (F6), and “part-time workers” (F7).
The last factor F7 is negatively correlated – the
more part-time workers there are, the less team co-
hesion is observed (this factor has also a negative
weight in the original EFs model). The “team co-
hesion” is also a scale factor in the COCOMO II
effort estimation method [41].

The high correlation between the factors F1-F4 is un-
surprising. For instance, if the team is experienced in
software development (F3) it seems also highly prob-
able that its members are experienced designers (F4).
(The factor F4 is, however, irrelevant if the team does
not use object-oriented programming languages.)

Summary: Adjustment factors have been broadly
discussed and criticized in the context of FPA [3, 4, 6,
42]. (The main reported problems related to the inad-
missible operations on scales and the minor impact of
the adjustment factors on the accuracy of the effort esti-
mation based on FPA.)

In this study we observed a similar phenomenon re-
lated to adjustment factors in UCP. We observed the
minor influence of these factors on the accuracy of the
effort estimation based on UCP. The second observa-
tion was that some of the adjustment factors are clearly

11

overlapping. (The total number of 21 adjustment fac-
tors considered in UCP could be limited to 4 technical
complexity factors and 2 environmental factors.)

7. Use Case Points – Steps vs. Transactions

As a use-case transaction is a set of activities in use-
case-scenarios, which is either performed entirely, or
not at all [9], a single transaction might be a part of
a use-case scenario, a step, or even a single phrase.

Some authors suggested that counting transactions is
equivalent to counting steps [18, 43], which in our ex-
perience is not always true. However, if steps could be
counted instead of transactions, it would simplify the
UCP method (as identification of transactions can be
a difficult task [21]7).

Thesis: The value of UCP calculated based on steps
is the same as if calculated based on transactions.

Investigation: The exact values of UCP calculated
based on steps and transactions differed significantly8.

One of the reasons for such discrepancy is that steps
are elements of use-case syntax (and not necessary se-
mantics). Therefore, a single use case can be eas-
ily written using a different number of steps, without
changing its abstraction level, or even phrases [23].

For instance, in the considered set of projects, the
ratio between the number of steps and the number of
transactions ranged from 1.50 to 4.04 (mean = 2.83,
and SD = 0.75). This is because, some authors may
follow the Jacobson’s suggestion that each step of a use
case should constitute a transaction [11, 23]; other au-
thors may express most of transactions with the use of
two steps (actor’s request, and system response). Un-
fortunately, many other approaches are also possible
(or a mixture of different approaches depending on the
functionality being described).

The difference between the number of steps and the
number of transactions impacts the value of UCP. The
observed ratio between UCP-S and UCP-T for the con-
sidered projects ranged from 1.05 to 2.12 (mean = 1.73,
and SD = 0.28).

Although, the values of UCP-S and UCP-T differed
significantly, a strong correlation between them was ob-
served (Pearson’s product-moment coefficient r = 0.99,
p-value < 0.001). Therefore, one can try to predict the

7Six experts counted transactions in 30 use cases. The highest
obtained total number of transactions was nearly 2 times greater than
the smallest one.

8Two-tailed Wilcoxon signed-rank test with significance level
α set to 0.05 (p-value = 0.001); calculated effect size: d = 0.65; retro-
spective power: (1-β) = 0.55.

100 200 300 400 500

0
10

0
20

0
30

0
40

0

UCPïS

U
C

Pï
T

y= 0.584 x ï 0.214

Figure 3: Scatter plot with linear regression presenting dependency
between UCP-S and UCP-T for the projects introduced in Section 3
(dashed lines – 95% confidence interval; dotted lines – 95% prediction
interval)

value of UCP-T based on the value of UCP-S (e.g., by
constructing a linear regression model as presented in
Figure 3). The accuracy of such predictions depends on
similarities (or differences) in use-case writing style be-
tween the projects. For instance, projects B and E were
developed by the same enterprise, however, the ratios
between UCP-S and UCP-T were 1.1 and 1.8. More
convergent writing styles were observed in projects H,
I, and K, which were also developed by a single organi-
zation (the ratios were 1.7, 2.0, and 1.8).

Summary: The values of UCP calculated based on
steps and transactions might not be the same, therefore,
it is recommended to not mix them together within a sin-
gle historical database.

However, if an organization is forced to use histori-
cal data concerning UCP coming from different sources
(without the access to the requirements specifications,
e.g., data published in scientific papers), where UCP
is calculated based on steps, for some of the projects,
and based on transactions, for the rest of them, it may
consider using regression model to predict the values of
UCP, and unify the measurements within the data set
(e.g., multiply the values of UCP-S by 0.584 accord-
ing to the model presented in Figure 3 to obtain the ap-
proximated values of UCP-T). Unfortunately, such con-
version will introduce an error, which value depends on
the level of differences between the writing style of use
cases (which cannot be assessed without the access to
the requirements specification documents).

In addition, it is important to provide information
whether UCP was calculated based on steps or transac-
tions when reporting any study concerning UCP (which

12

is a seldom observed practice).
Although, the values of UCP calculated based on

steps and transactions are not equivalent, the question
arises about the equivalence of the accuracy of effort es-
timation based on UCP-S and UCP-T.

Thesis: The accuracy of UCP calculated based on
steps is not worse than if calculated based on transac-
tions.

Investigation: In order to investigate whether the
choice of steps or transactions to calculate UCP impacts
the accuracy of effort estimation, we compared the ac-
curacy of effort prediction based on the corresponding
variants of UCP (also UUCP and UUCW) calculated
based on steps and transactions.

The observed differences in the accuracy of effort es-
timation between the corresponding variants of UCP
(e.g., UCP-S vs. UCP-T) were not significant. How-
ever, all variants of UCP calculated based on steps pro-
vided on-average more accurate predictions. The differ-
ences between the average values of MMRE were 0.06
(UUCW), 0.07 (UUCP), and 0.10 (UCP) – all in favour
of the variants calculated based on the number of steps.
However, lower variability of MMRE between the data
sets was observed for the variants of UCP calculated
based on the number of transactions.

The similar observation was made for the predic-
tion quality. The differences between the average val-
ues of Pred(0.25) were 0.11 (UCP), 0.12 (UUCW),
and 0.14 (UUCP) – in favour of variants based on steps.
Again, lower variability was observed for UUCP and
UUCW calculated based on transactions (in the case of
UCP the variability was slightly lower for UCP-S). We
also observed that UCP-S provided systematically more
accurate estimates than UCP-T. (It was not observed,
however, in the case of UUCP and UUCW.)

The main reason for such visible on-average differ-
ences in the accuracy between the step-based and the
transaction-based variants of UCP was that the variants
based on steps performed visibly better for more homo-
geneous data sets (i.e., ADM, EF1, EF2, and TCF1).

All the variants of UCP (no matter if calculated based
on steps or transactions) had a minor tendency to over-
estimate the effort, however, in the case of more homo-
geneous sets the mean RE was usually close to zero.

Summary: The observation made in this study was
that the variants of UCP calculated based on steps pro-
vided not worse (or even slightly better) accuracy of ef-
fort estimation than the corresponding variants calcu-
lated based on transactions.

Therefore, it seems that if an organization has a stan-
dardized style of writing use cases for all the projects, it
may consider simplifying UCP by calculating its value

based on steps in use cases.

8. Counting Steps Instead of UCP

It seems that UCP can be simplified by using steps
to calculate UUCW instead of transactions. The ques-
tion arises, whether it can be further simplified to count
just the total number of steps in all use cases?

Thesis: The Steps metric, which is the total number
of steps in all use cases describing the system, can be
used to estimate effort with similar accuracy to UCP.

Investigation: To investigate the thesis, we com-
pared the accuracy of estimation based on UCP calcu-
lated based on steps (UCP-S, UUCP-S, and UUCW-S)
with the Steps metric.

The observed accuracy of effort estimation for UCP-S
and Steps were on-average similar (no significant differ-
ences were observed). The average values of MMRE
were the same for both metrics, however, a slightly
lower variability was observed for UCP-S. In addi-
tion, UCP-S provided better on-average prediction qual-
ity than Steps (by 0.06). The Steps metric performed
slightly better for more homogeneous subsets and when
the multiple regression model was used instead of the
single regression model.

In comparison between Steps and two other step-
based metrics UUCP-S and UUCW-S, lower on-average
MMRE was observed for Steps (the differences between
the average MMREs were 0.05 and 0.07). The null hy-
potheses about the equality of median values of MRE
could be rejected for Uni, Web, and Java sets. However,
both UUCP-S and UUCW-S provided slightly higher
on-average values of Pred(0.25), mainly because they
performed visibly better than Steps in the case of more
homogeneous subsets.

Summary: Counting the total number of steps in-
stead of UCP could simplify the effort estimation pro-
cedure. However, one should be aware that this tech-
nique could be exposed to the problems related to the
differences in use-case writing style and the differences
in abstraction levels of use cases (see Sections 7 and 9).

9. Long Live Transactions!

If the variants of UCP calculated based on the num-
ber of steps and the Steps metric itself could provide
effort estimates with the similar accuracy to the UCP
calculated based on the number of transactions, then,
are transactions still worth considering?

Thesis: Use-case transactions can be used to provide
effort estimation with better accuracy than UCP calcu-
lated based on steps.

13

Investigation: Use-case transactions are supposed
to express the semantics of interaction between actors.
Therefore, they should be less prone to different author
writing styles (or different levels of abstraction in use
cases).

In this study, we were not able to assess the scale
of influence of use-case writing style on the accuracy
of the effort estimation based on step-based size met-
rics. However, to present the potential problems of
using steps instead of transactions, we compared two
projects that have visible differences in writing style of
use cases, but their actual effort was similar (projects B
and I). If the post productivity factors of these projects
were cross-used between them to estimate the effort, the
ratios between the MRE for UCP-S and UCP-T would
be 1.72 (B based on I) and 3.31 (I based on B). There-
fore, UCP-T would be a better choice than UCP-S if
there is a threat that use cases stored in the historical
database differ in respect to the level of abstraction or
writing style.

Recently two new functional size measures that are
based on the concept of use-case transactions were pro-
posed, i.e., Transactions [20], and TTPoints [29].

The Transactions metric is defined as the total num-
ber of transactions that can be identified in all use cases
describing the system under development.

The TTPoints metric is also based on the number
of transactions, but it includes additional information
about the semantics of transactions (twelve semantic
transaction types have been identified so far9).

The value of TTPoints is calculated according to
Equation 12. The main difference between the Trans-
actions and TTPoints is concerning the way they as-
sess complexity of a single transaction. In the case
of Transactions metric, all transactions are treated as
equally complex. However, in TTPoints the complex-
ity of a single transaction is calculated by multiplying
together the weight assigned to its semantic type, the
number of actors interacting with the system under de-
velopment (within the transaction), and the number of
objects being processed within the transaction.

TTPoints =
n∑

i=1

TT Weighti × Objectsi × Actorsi (12)

where

9The semantic transaction-types defined in [29]: Create, Retrieve,
Update, Delete, Link, Delete Link, Asynchronous Retrieve, Dy-
namic Retrieve, Transfer, Check Object, Complex Internal Activity,
and Change State.

• n is the number of semantic transactions identified
in the requirements specification;

• TT Weighti is the weight assigned to the type of the
i-th transaction, which corresponds to the number
of core actions (actions that are necessary to pre-
serve the semantic sense of a given type of transac-
tion, e.g., a “provision of data” is a core action for
the “create” type of transaction);

• Objectsi is the number of domain objects processed
by the i-th transaction;

• Actorsi is the number of collaborating actors in the
i-th transaction (other than actor representing the
system under development).

The effort estimation capabilities of Transactions
and TTPoints metrics were preliminary verified [29,
44]. The observations were made that they can be ef-
fectively used to estimate effort at the early stages of
projects.

In order to investigate the differences between the ac-
curacy of transactions-based and step-based size met-
rics, we compared prediction accuracy of Transactions
and TTPoints with the accuracy of other size metrics
calculated based on the number of steps.

In the performed comparison, the Transactions met-
ric provided on-average a slightly worse prediction ac-
curacy than the measures based on the number of steps.
The differences between the average values of MMRE
and average Pred(0.25) ranged from 0.03 to 0.10 – all
in favour of step-based measures. However, lower vari-
ability of MMRE was observed for Transactions in all
cases. (The variability of Pred(0.25) was not lower for
Transactions only in the comparison with UCP-S.)

The observed differences in favour of step-based
measures were mainly due to extremely poor accuracy
of Transactions in the case of the sets ADM, EF2, and
TCF1. If only the bigger sets of projects were con-
sidered (i.e., All, Ind, Uni, Web, and Java) Transac-
tions would be on-average more accurate than UUCW-S
and UUCP-S, and equally accurate to UCP-S and Steps
(however, still providing estimates with lower variabil-
ity of prediction error).

The second considered size metric – TTPoints pro-
vided estimates with better prediction accuracy than the
size metrics calculated based on the number of steps.
The differences observed between the average values
of MMRE ranged from 0.14 to 0.22 – all in favour
of TTPoints. A similar observation was made for the
differences between the values of Pred(0.25), which
ranged from 0.08 to 0.15.

14

The differences in the median values of MREs be-
tween TTPoints and three other step-based size mea-
sures UUCP-S, UUCW-S, and Steps were significant
for the sets: All, Ind, and Web (in the case of compar-
ison with UUCW a significant difference was also ob-
served for the Java set). The differences in median val-
ues of MREs between TTPoints and UCP-S were sig-
nificant only for the Ind set.

There are few potential reasons that could explain
why TTPoints performed better than measures based on
counting the number of steps.

First of all, the semantic transaction types that are
used in TTPoints are based on another definition of use-
case transaction provided by Diev [14], which is similar
to the definition of elementary process in FPA. It states
that a use-case transaction is the smallest unit of activity
that is meaningful from the actor’s point of view, which
is self-contained and leaves the business of the appli-
cation being sized in a consistent state. Therefore, this
definition of transaction is oriented towards achieving
goals meaningful for actors. The semantic transaction
types define a catalogue of such meaningful goals that
can be found in use cases.

For example, in use case presented in Figure 1 one
can identify a single transaction which semantic type
is called “create”. If the stimulus-response transaction
definition was used, two transactions would be identi-
fied in the same use case (or even three if one considers
an alternative ending of the same transaction as a new
one).

Therefore the question arises what is the advantage of
using the semantic-types approach to transaction identi-
fication? For instance, if in the same use case (presented
in Figure 1) the action of submitting the “paper submis-
sion form” was divided into two sub-actions – provid-
ing general information about the paper and separately
its content, then, one more transaction would be identi-
fied if the stimulus-response definition is followed. For
semantic transaction types, such use cases would still
contain a single “create” transaction.

The weights of semantic transaction types in the
TTPoints method are based on the number of so-called
“core actions” (actions that are crucial for preserving
the meaning of a transaction type). This weight could
be understood also as the minimum number of actions
that have to be performed for a given type of transaction.

TTPoints also includes information about domain ob-
jects that appear in use-case scenarios. In previous stud-
ies [20, 29], it was observed that the size metric defined
as the total number of objects found in use-case scenar-
ios does not provide an accurate prediction when it is
used for effort estimation.

Another observation was that domain objects differ
in importance [29] (e.g., some of them are the subjects
of many use cases). Therefore, the total number of do-
main objects is not a good candidate for being a stan-
dalone size measure. In TTPoints the number of do-
main objects is counted for each transaction (not for the
whole requirements specification). In most cases, a sin-
gle domain object is processed per transaction, however,
a complex transaction can process more objects. The
same relates to actors. It is seldom observed that there is
more than one actor interacting with the system within
a single transaction. However if it happens, the transac-
tion is assumed to be more complex in TTPoints (e.g.,
some additional systems are taking part in the transac-
tion).

Summary: The first observation that was made
based on the results of the analysis was that the accuracy
of the effort estimation based on Transactions was com-
parable to the accuracy observed for UCP-S or Steps.
However, the main advantage of Transactions was lower
variability of prediction error. In addition, both Steps
and Transactions are simple measures that are mathe-
matically valid, in contrast to UCP.

The second investigated size measure was TTPoints,
which seemed to outperform all step-based metrics con-
sidered in this study. However, the procedure for calcu-
lating TTPoints seems to be slightly more complex than
counting the total number of transactions or steps.

10. Threats to Validity

There are several threats to the validity of this study.
Some of them regard internal or conclusion validities,
which in this study relates to the quality and relevance
of the collected data and application of statistical tech-
niques. Other threats refer to external validity, which
describes problems with generalization of observations
made based on the considered data set for other projects.

10.1. Internal Validity

The projects analyzed in this study were developed
by different organizations. Therefore, the maturity of
development processes could affect the recorded effort.
Moreover, in the case of some projects we did not have
access to the detailed data regarding the types of activi-
ties included in the recorded effort.

Additional problems relate to the objectiveness of
transaction-identification in use cases. In order to pre-
serve consistency of this process, the same person iden-
tified all transactions. To investigate the potential prob-
lems related to reliability of transaction-identification,

15

we asked an external expert to review the transaction
counts for the random sample containing 20% of all use
cases. However, there still might be some inconsisten-
cies in the results of transaction-identification process
due to the different styles of writing use cases between
the projects.

10.2. Conclusion Validity

There are also several threats to validity that relate
to the significance of observation that were made. Al-
though we performed statistical testing of hypotheses,
one should treat the obtained results with caution.

First of all, due to the large number of direct com-
parisons a multiple testing procedure should be used –
which could be done, e.g., by applying the Bonferroni
correction (i.e., dividing the initial value of α by the to-
tal number of direct comparisons). However, the more
important issue in the context of this study relates to sta-
tistical power10 of the performed tests (1–β). It is impor-
tant because whenever we investigated a potential way
of simplifying UCP, it was sufficient for the simplified
variant of the method to perform at least as good as the
original one. Therefore, if the null hypothesis about the
equality of median MREs between two compared vari-
ants of UCP was really true, it would also support the
thesis that UCP can be simplified, without limiting its
prediction accuracy.

To investigate this issue, we performed a sensitivity
analysis [45] in order to find out what is the minimal ef-
fect size that could be detected with the assumed power
of 1–β = 0.80, for the size of samples ranging from 3
to 14, and significance level α = 0.05. The minimal
effect size that could be detected for a sample of 14
projects would be 0.83, which is a “large” effect size ac-
cording to Cohen [46]. For the smallest subsets contain-
ing 3 projects such effect size could be detected if as-
sumed statistical power of the test was reduced to 0.13.
The observed effect size11 was on-average “medium”
(d = 0.48); the “small” effect size was observed for
34% of the comparisons (d ≤ 0.2); the effect size be-
tween “small” and “large” was observed for 47% of the
comparisons (0.2 < d < 0.8); and “large” effect size
was observed for the remaining 19% of the comparisons
(d ≥ 0.8).

10The power of a statistical test (1–β) is the probability that the
statistical test will reject a false null hypothesis.

11We performed the retrospective power analysis, however, this
technique is often criticized because it is based on the questionable
assumption that the sample effect size is identical to the effect size in
the population from which it was drawn [47].

Therefore, whenever we were not able to reject the
null hypothesis, it could mean that either the null hy-
pothesis was really true or the effect size was too small
to be detected in this study.

10.3. External Validity

The main external threat to validity relates to the size
of the data set which limits the strength of conclusions
that can be made. However, the considered data set is
still one of the largest data sets that have been published
and used to analyze the UCP method12.

Another threat to validity could be the heterogeneity
of the analyzed set of projects. In order to mitigate that
problem we decided to perform the analysis on the main
set and its subsets that seemed to be homogeneous in
some sense. In addition, we performed the same cross-
validation procedure for all combinations of the main
set containing from 3 to 14 projects. The observation
that was made based on the analysis of the distributions
of MMRE for the considered size metrics (see Figure 4)
is that the different compositions of the main data set
did not influenced visibly the findings of this study.

Another limitation related to external validity of this
study is that the data set contained mainly data from
the projects aimed to develop data-intensive systems
(probably the most outlying project, in that context, was
the project B). Therefore, the observations made in this
study could be generalized mainly to this kind of sys-
tems. (However, the relation between the structure of
use cases and the complexity of the system for different
types of applications still remains unknown.)

11. Conclusions

In this study the construction of the Use Case Points
method was investigated based on the data collected
from 14 software projects. The aim was to search for
potential ways to simplify the effort estimation based
on use cases.

The first potential approach to simplify UCP is to re-
ject UAW. We observed that in the case of the consid-
ered data set it had only minor impact on the accuracy
of effort estimation based on UCP.

12Some of the largest data sets that were published (together with
basic information about the projects, i.e., UCP, actual effort, context):
Frohnhoff and Engles [38] – 15 industrial projects (728–136 320h),
Ribu [18] – 12 projects (2 industrial 10 043–13 933h, and 10 stu-
dents’ 232–595h). Larger data sets were also reported to be used as a
basis for the analysis of UCP (however without providing in-depth in-
formation about the projects): Arnold and Pedross [16] – 23 projects,
Carrol [48] – more than 200 projects, Diev [49] – 30 projects.

16

UCPïT no UAW
UCPïT
UCPïS

UUCPïT
UUCPïS

UUCWïT
UUCWïS

Steps
Transactions

TTPoints

0.0 0.5 1.0 1.5 2.0 2.5 3.0
MMRE

Figure 4: Box plots presenting distributions of the MMRE calculated for the subsets of the main data set (16 278 combinations of the main set that
contained from 3 to 14 projects)

The next observation was that the adjustment factors
used in UCP did not provide a significant improvement
in the accuracy of effort estimation. In addition, the
model of 21 adjustment factors seemed to be superflu-
ous. In most cases, a single additional predictor added
to the regression model was sufficient to provide esti-
mates with similar accuracy as when TCF and EF were
used. Finally, according to the results of the performed
factor analysis the number of adjustment factors might
be reduced to 2 environmental factors and 4 technical
complexity factors.

Another way of simplifying the UCP-based effort es-
timation is to calculate the value of UCP based on the
number of steps instead of transactions. We observed
that the step-based variant of UCP provided not worse
effort prediction than calculated based on the number of
transactions in use cases. However, the exact values of
both variants of UCP were not the same. In addition, the
extremely simplified variant of UCP which is counting
the total number of steps in all use cases provided sim-
ilar prediction accuracy to other variants of UCP calcu-
lated based on steps.

We also investigated the accuracy of two recently pro-
posed size metrics Transactions [20] and TTPoints [29].

The observation was made that the Transactions met-
ric provided a similar effort prediction as the differ-
ent variants of UCP calculated based on the number
of transactions. (The step-based size metrics provided
slightly better on-average accuracy than Transactions,
however, with higher variability.) The TTPoints met-
ric [29] (which extends the idea of Transactions) pro-
vided slightly better prediction accuracy than all consid-
ered variants of UCP. In addition, the measures based on
steps seemed to be more sensitive to the differences in
use-case writing style than transactions.

The main limitations of the observations made in this
study are related to the small size of the considered set
of projects and its heterogeneity.

Acknowledgements

We would like to thank Jakub Jurkiewicz for perform-
ing the review of transaction-counts in use cases, and
Sylwia Kopczyńska for her valuable remarks.

We also thank the anonymous reviewers for their
comments, which resulted in substantial improvements
to this work.

This research project operated within the Foundation
for Polish Science Ventures Programme co-financed by
the EU European Regional Development Fund.

References

[1] A. Albrecht, Measuring application development productivity,
Proceedings of the Joint SHARE/GUIDE/IBM Application De-
velopment Symposium (1979) 83–92.

[2] C. Lokan, An empirical study of the correlations between func-
tion point elements, in: Software Metrics Symposium, 1999.
Proceedings. Sixth International, IEEE, 2002, pp. 200–206.

[3] C. Lokan, An empirical analysis of function point adjustment
factors, Information and Software Technology 42 (9) (2000)
649–659.

[4] R. Jeffery, J. Stathis, Function point sizing: Structure, validity
and applicability, Empirical Software Engineering 1 (1) (1996)
11–30.

[5] B. Kitchenham, K. Kansala, Inter-item correlations among func-
tion points, in: Software Metrics Symposium, 1993. Proceed-
ings., First International, IEEE, 2002, pp. 11–14.

[6] B. Kitchenham, The problem with function points, IEEE Soft-
ware 14 (2) (1997) 29–31.

[7] C. R. Symons, Software Sizing and Estimating: Mk II FPA
(Function Point Analysis), John Wiley & Sons, Inc., New York,
NY, USA, 1991.

17

[8] A. Abran, J. Desharnais, S. Oligny, D. St-Pierre, C. Symons,
The COSMIC Functional Size Measurement Method v3.0.1,
Measurement Manual (May 2009).

[9] G. Karner, Metrics for objectory, Master’s thesis, University of
Linköping, Sweden (1993).

[10] I. Jacobson, Object-oriented development in an industrial envi-
ronment, ACM SIGPLAN Notices 22 (12) (1987) 183–191.

[11] I. Jacobson, M. Christerson, P. Jonsson, G. Övergaard, Object-
Oriented Software Engineering: A Use Case Driven Approach,
Addison Wesley Longman, Inc, 1992.

[12] C. Neill, P. Laplante, Requirements engineering: the state of the
practice, Software, IEEE 20 (6) (2003) 40–45.

[13] M. Braz, S. Vergilio, Software effort estimation based on use
cases, Proceedings of the 30th Annual International Com-
puter Software and Applications Conference (COMPSAC’06)-
Volume 01 (2006) 221–228.

[14] S. Diev, Use cases modeling and software estimation: applying
use case points, ACM SIGSOFT Software Engineering Notes
31 (6) (2006) 1–4.

[15] P. Mohagheghi, B. Anda, R. Conradi, Effort estimation of use
cases for incremental large-scale software development, Pro-
ceedings of the 27th international conference on Software en-
gineering (2005) 303–311.

[16] M. Arnold, P. Pedross, Software size measurement and produc-
tivity rating in a large-scale software development department,
Proceedings of the 20th ICSE (1998) 490–493.

[17] B. Anda, H. Dreiem, D. Sjøberg, M. Jørgensen, Estimating soft-
ware development effort based on use cases-experiences from
industry, Fourth International Conference on the UML (2001)
487–504.

[18] K. Ribu, Estimating object-oriented software projects with use
cases, Master’s thesis, University of Oslo, Department of Infor-
matics (2001).

[19] J. Ouwerkerk, A. Abran, An evaluation of the design of use case
points (UCP), in: A. Abran, R. Dumke, M. Ruiz (Eds.), Pro-
ceedings of the International Conference on Software Process
and Product Measurement MENSURA 2006, Publish Service
of the University of Cádiz www.uca.es/publicaciones, 2006, pp.
83–97.

[20] G. Robiolo, R. Orosco, Employing use cases to early estimate
effort with simpler metrics, Innovations in Systems and Soft-
ware Engineering 4 (1) (2008) 31–43.

[21] M. Ochodek, J. Nawrocki, Automatic transactions identification
in use cases, in: Balancing Agility and Formalism in Software
Engineering: 2nd IFIP Central and East European Conference
on Software Engineering Techniques CEE-SET 2007, Vol. 5082
of LNCS, Springer Verlag, 2008, pp. 55–68.

[22] S. Adolph, P. Bramble, A. Cockburn, A. Pols, Patterns for Ef-
fective Use Cases, Addison-Wesley, 2002.

[23] A. Cockburn, Writing Effective Use Cases, Addison-Wesley
Boston, 2001.

[24] M. Bundschuh, C. Dekkers, The IT Measurement Compendium:
Estimating and Benchmarking Success with Functional Size
Measurement, Springer-Verlag New York, Inc., 2008.

[25] N. E. Fenton, S. L. Pfleeger, Software Metrics: A Rigorous and
Practical Approach, PWS Publishing Co., Boston, MA, USA,
1998.

[26] G. Schneider, J. Winters, Applying Use Cases: A Practical
Guide, Addison-Wesley Longman Publishing Co., Inc. Boston,
MA, USA, 1998.

[27] J. Ward Jr, Hierarchical grouping to optimize an objective func-
tion, Journal of the American Statistical Association 58 (301)
(1963) 236–244.

[28] A. Žiberna, N. Kejžar, P. Golob, A comparison of different ap-
proaches to hierarchical clustering of ordinal data, Metodološki

zvezki 1 (1) (2004) 57–73.
[29] M. Ochodek, J. Nawrocki, Enhancing use-case-based effort es-

timation with transaction types, Foundations of Computing and
Decision Sciences 35 (2) (2010) 91–106.

[30] J. Cohen, Weighted kappa: Nominal scale agreement provision
for scaled disagreement or partial credit, Psychological bulletin
70 (4) (1968) 213–220.

[31] J. Landis, G. Koch, The measurement of observer agreement for
categorical data, Biometrics 33 (1) (1977) 159–174.

[32] E. Alpaydin, Introduction to Machine Learning (Adaptive Com-
putation and Machine Learning), The MIT Press, 2004.

[33] J. Miles, M. Shevlin, Applying Regression & Correlation: A
Guide for Students and Researchers, Sage Publications Ltd,
2001.

[34] D. Wright, K. London, Modern Regression Techniques Using
R: A Practical Guide for Students and Researchers, Sage Publi-
cations Ltd, 2009.

[35] R. Jeffery, M. Ruhe, I. Wieczorek, A comparative study of
two software development cost modeling techniques using
multi-organizational and company-specific data, Information
and Software Technology 42 (14) (2000) 1009–1016.

[36] M. Jørgensen, K. Moløkken-Østvold, Reasons for software ef-
fort estimation error: Impact of respondent role, information
collection approach, and data analysis method, IEEE Transac-
tions on Software Engineering 30 (12) (2004) 993–1007.

[37] S. D. Conte, H. E. Dunsmore, V. Y. Shen, Software Engineering
Metrics and Models, Benjamin-Cummings Publishing Co., Inc.,
Redwood City, CA, USA, 1986.

[38] S. Frohnhoff, G. Engels, Revised Use Case Point method
– Effort estimation in development projects for business ap-
plications, in: I. Schieferdecker, S. Goericke (Eds.), Setting
Quality Standards: Proceedings of the CONQUEST 2008,
dpunkt.verlag, 2008, pp. 15–32.

[39] J. Kim, C. Mueller, Factor analysis: Statistical methods and
practical issues, Sage Publications, Inc, 1978.

[40] ISO/IEC, ISO/IEC 9126-1: Software engineering – Product
quality – Part 1: Quality model (2001).

[41] B. W. Boehm, B. K. Clark, E. Horowitz, A. Brown, D. Reifer,
S. Chulani, R. Madachy, B. Steece, Software Cost Estimation
with COCOMO II, Prentice Hall, Upper Saddle River, NJ, USA,
2000.

[42] D. Jeffery, G. Low, M. Barnes, A comparison of function point
counting techniques, IEEE Transactions on Software Engineer-
ing 19 (5) (1993) 529–532.

[43] R. Clemmons, Project estimation with use case points,
CrossTalk–The Journal of Defense Software Engineering 19 (2)
(2006) 18–22.

[44] G. Robiolo, C. Badano, R. Orosco, Transactions and paths: two
use case based metrics which improve the early effort estima-
tion, in: Third International Symposium on Empirical Software
Engineering and Measurement, 2009, pp. 422–425.

[45] F. Faul, E. Erdfelder, A. Lang, A. Buchner, G*Power 3: A flexi-
ble statistical power analysis program for the social, behavioral,
and biomedical sciences, Behavior Research Methods 39 (2)
(2007) 175–191.

[46] J. Cohen, Statistical power analysis, Current Directions in Psy-
chological Science 1 (3) (1992) 98–101.

[47] B. Zumbo, A. Hubley, A note on misconceptions concerning
prospective and retrospective power, Journal of the Royal Statis-
tical Society – Series D: The Statistician 47 (2) (1998) 385–388.

[48] E. Carroll, Estimating software based on use case points, Con-
ference on Object Oriented Programming Systems Languages
and Applications (2005) 257–265.

[49] S. Diev, Software estimation in the maintenance context, ACM
SIGSOFT Software Engineering Notes 31 (2) (2006) 1–8.

18

