
Quick Prototyping of Web Applications?

Łukasz Olek, Bartosz Michalik, Jerzy Nawrocki, Mirosław Ochodek

Poznań University of Technology, Institute of Computing Science,
ul. Piotrowo 3A, 60-965 Poznań, Poland

{Lukasz.Olek, Bartosz.Michalik, Jerzy.Nawrocki,
Miroslaw.Ochodek}@cs.put.poznan.pl

Abstract. Web applications are getting more and more complex. Be-
cause of this, effective communication with prospective end user is essen-
tial. In the paper the concept of quick prototyping of web applications
is presented and early experience with implementation of the concept
is discussed. This approach assumes that requirements are written in
form of use cases supplemented with screen designs. Quick prototype is
generated automatically from these artifacts.

1 Introduction

Web applications are getting more and more complex. They serve as a basis for e-
governance, enterprise content management etc. (it is predicted that in 2008 the
ECM market will amount to $3.9 billion [8]). Designing such complex and inno-
vative applications require good communication with end-users at requirements
elicitation stage. It is well-known that end-user feedback is very important, so
experts suggest to use prototyping [21,20,4] to enhance this feedback. However,
in constantly changing business environment, a prototype becomes additional
artifact that requires maintenance and involves additional costs.

In Quick Prototyping we generate a mockup from use cases and screen de-
signs. Such choice seems to be reasonable, since most projects use scenarios or
use cases to write requirements (>50%) and user interfaces designs to visualize
future system (>65%) [15]. The prototype is “quick" as it can be automatically
generated from the requirements specification. It is also “cheap" as after chang-
ing requirements you can easily regenerate the mockup. Mockup is a simple web
application that presents use cases together with screen designs attached to each
step. An end user can animate the use cases to understand the application under
development and can perform a review (the prototype collects feedback from a
number of end-users and presents reports).

Since we generate a Mockup automatically, the requirements must be written
using a semi-formalized model, understandable by a computer. This rises two
main questions that are answered in this paper:

? This research has been financially supported by the Ministry of Scientific Research
and Information Technology grant N516 001 31/0269.

Quick Prototyping of Web Applications 125

– Is the formalization usable for analyst, so is this model flexible enough to
describe real web applications?

– People don’t like formal models, because they seem to be difficult to under-
stand. Thus, is generated mockup easy to understand?

In the paper various methods of prototyping are discussed (in Section 2) and
the concept of quick prototyping of web applications is presented (Section 3).
The concept was implemented as a part of the UC Workbench [13]. We describe
our early experience with the mockup (Section 4) and present the mechanism of
end-user-feedback measurement and analysis (Section 5).

2 Other Prototyping Methods

There are many well known and commonly used approaches to prototyping. In
Paper Prototyping [17,20] the vision of future software is presented to an user
using paper sketches. An analyst acts as a computer: draws and presents different
sketches according to user’s actions. User tries to execute some tasks with this
“system”. The analyst quickly sketches low-fidelity screens on paper during the
session with the user, thus this method does not require extensive preparations.
However, presentation costs are quite high: the analyst needs to invest his time to
examine different functions with many users. The presentation of the prototype
cannot be done remotely. Maintainability costs are also high: when requirements
change, you need to repeat the process.

Storyboarding [10] approach is somewhat similar to Paper Prototyping. Here
analyst does not prepare a single screen sketch, but the whole sequence of screens
for the particular task. Storyboards are presented to users, and feedback is re-
ceived. Storyboarding is less interactive than Paper Prototyping, because user
can only watch it, but it is much easier to present such a prototype remotely
(e.g. you can scan storyboard and send it using e-mail). The biggest problem
arises with maintainability of storyboards. It is difficult to update the prototype
- usually you need to throw away earlier version, and prepare a new one.

In prototyping using RAD approach, programmer uses Rapid Application
Development (RAD) tools to produce a Graphical User Interface (GUI) layer
using programming languages. It requires quite substantial effort to prepare such
prototype, because RAD tools are optimized for the software development not
prototyping. This approach is not very agile because it is not easy to introduce
changes. RAD prototyping belongs to high-fidelity methods. It is difficult to say,
whether high- or low-fidelity is better [18,23,22], but some studies [23] show that
users tend to focus too much on graphical aspects of system on high-fidelity
prototypes. One big advantage of this approach is that it is possible to use the
prototype as a basis for GUI of future application.

The comparison of selected methods is shown in Table 1.

126 Olek, Michalik, Nawrocki, Ochodek

Table 1. Comparison of prototyping methods.

Attribute Paper Prototyping Storyboarding RAD Prototyping
Preparation costs Low Low High
Maintainability costs Moderate Moderate High
Understandability Easy Easy Moderate
Remote presentation Difficult Easy Easy

3 The Concept of Quick Prototyping Method

Requirement engineering experts [2,3] say that requirements should only present
behavioural aspects of future system. These aspects shouldn’t be mixed with
user interface details, because it would disturb in seeing the overall vision of
future system. On the other hand people are holistic beings, so the textual
description is often not enough to present the vision. Because of that many
experts advice to create prototypes (e.g. [21]) and present them to end-users to
validate requirements.

Quick Prototyping tries to combine this two aspects (behavioural and graphi-
cal).The aspects are linked together, but kept separately (see Fig. 1). This allows
analyst to focus only on system behaviour in the beginning, without being dis-
turbed by user interface details.

Use case

1. Customer chooses search option.

2. Customer enters search criteria

3. System shows a list of product that satisfies...

Screen sketches

Search criteria

Criteria

Type

OK Cancel

Show details

Search results

Products that satisfy criteria:

- Product 1
- Product 2

Fig. 1. A concept of keeping behavioural and user interface aspects separate. This
orthogonality helps in introducing changes to the model, because they need to be
introduced in one place only.

Behavioural aspects are written in form of structured use cases. Single use
case [3,7,19] describes interaction between user and future system formed in
sequence of steps. Use case has main scenario – steps that describe the most
common way to reach user goal, and extensions that describe exceptional situa-
tions. A use case comprises a set of scenarios with the same goal. Each extension
describes another scenario. Such use cases are semiformal. They are expressed
in a natural language but the description has a structured form of a sequence

Quick Prototyping of Web Applications 127

of steps and extensions. Each step can be connected with lo-fidelity sketches of
application screens visible by user at this step.

Generated Mockup is similar to a storyboard (see Section 2) – it presents
sequence of screen sketches according to some scenario . Mockup combines use
cases (i.e. behavioural description) with attached screen designs on one view. A
generated mockup is based on a web browser and it consists of two frames (see
Fig. 2):

– the scenario window presents the currently animated use cases (it is the left
frame in Fig. 2) and the current step is shown in bold;

– the screen window shows the screen design associated with the current step
(it is the right frame in Fig. 2).

Fig. 2. An Example of mockup generated with UC Workbench. You can see a use case
on the left – viewers use it to navigate through the mockup, and screen design on the
right – a particular screen attached to selected step (in bold).

Automatically generated mockup has one great advantage over other proto-
typing methods – it is easy to change. When it requires a change, there is no need
to do this twice: once in prototype, and second time in requirements specifica-
tion. You just change use case or screen sketch and regenerate mockup. Moreover,
if one screen is used many times in use cases (e.g. log-in screen), you change it
in one place only (this is the main maintenance problem with Storyboards).

Mockup generation mechanism does not need to know the meaning of partic-
ular steps. The steps can still be expressed using natural language and remain
readable by humans. Only the structure of steps need to be formalized, because
the generator needs to know the order of steps and screens designs connected
with them. Use cases and screen designs are internally stored in XML format
for generation purposes.

128 Olek, Michalik, Nawrocki, Ochodek

3.1 Quick Prototyping with UC Workbench

UC Workbench [1,14,13] is a tool helping analysts during elicitation of require-
ments. It helps with use-case authoring according to model presented on Fig. 1.
It reads use cases and screen designs in a special XML format. It has an inte-
grated use-case editor – text editor optimized for use cases, and screen sketch
editor – graphical editor for quick screen sketching. UC Workbench has an in-
tegrated Quick Prototype generator, thus is able to generate mockups (see Fig.
2).

3.2 Specification for low-fidelity screen sketches

Screen sketches could be stored as bitmaps, but then semantical information
would be lost. UC Workbench tries to formalise screen structure by introducing
components that can be used for sketching application screens quickly. Currently
we support components for designing web applications. Screens can contain three
types of components:

– Static – user cannot act on them, but can read information: e.g. text or
image

– Dynamic – a user can interact with them (read information and act): e.g.
edit box, check box, combo box, radio buttons, list box or button. They
represent HTML controls.

– Grouping – used to structure screen properly. Currently there is one compo-
nent of this type: Repeater, used for grouping elements that can be repeated
on the screen (see Fig. 3).

Papers:

Author: Publication title
Publication date

Author: Publication title
Publication date

...

Repeater

Fig. 3. Example of Repeater component. This component is used to model list and
tables in web applications. It contains other elements that can be repeated on the
screen.

Quick Prototyping of Web Applications 129

4 Early Experience with Quick Prototyping

4.1 Flexibility of the Model

Usually an analyst uses general text editor and sheets of paper to author re-
quirements, thus he/she has a full freedom. Quick Prototyping generator needs
semi-formalized requirements (see Sec. 3), so the question arises: is this model
flexible enough to be used for real systems? To answer this question following
case study was conducted.

Three web systems were chosen to check if modelling existing systems in
details is possible. The focus was put on one use case from each system:

– transfer cash in a banking application: www.bzwbk.pl
– bid an auction in an auction system: www.allegro.pl
– buy an item from an on-line shop: www.amazon.com

Use cases were gathered by browsing through each described system. Then screen
designs were sketched using low-fidelity approach. Afterwards three mockups
were generated.

We did not find any obstacles to model selected functionality in details.
There was a straightforward mapping between screens from real application to
our mockup’s screens. However, we have found one interesting aspect to consider:
what is the best way to specify a tree of components (e.g. tree of categories of
books in e-shops)?. Further research is needed to find the best metaphor for such
situation, because it is not easy to specify them in formal, but understandable
way.

Low-fidelity static screens approach has some limitations. It is hard to show
complicated interaction (eg. specify how the system will react to a drag and
drop operation). Analyst can overcome this problem using a comment layer on
screens to describe how the system will react. This problem would also need a
further research.

4.2 Is Mockup Easy to Understand?

We have decided to verify thesis that mockup is an easy to use and self-explanatory
prototype, which provides comprehensive understanding of system business logic
and user interface (even with a limited analyst support).

Another valuable property of Quick Prototyping might be receiving feedback
concerning usability of application, at the early stage of the design process. A
simple experiment was conducted in order to compare system usability evalua-
tion based on the mockup and pure use-case description.

Experiment process description. The main idea of the first experiment was
to verify whether potential end users are able to write down all operations re-
quired to attain established business goal with the use of mockup instead of the
real system. We have decided to choose an electronic shop system under the

130 Olek, Michalik, Nawrocki, Ochodek

assumption that e-commerce domain is well known to the participants. The ex-
periment was conducted in 2006 at the Poznan University of Technology. The
participants were 4th year students working on their master degrees in Software
Engineering (SE). There were 15 students in the examined group. The experi-
ment procedure consisted of the following steps:

1. Introductory presentation, covering a mockup concept (15 min).
2. Survey: verification of students past experiences regarding the e-commerce

domain (especially electronic shops) and requirements engineering with use
cases.

3. Main task: achieving business goal from the user perspective, using the online
shop mockup.

4. Survey: participants personal assessment of the mockup prototyping concept
and usability of the presented e-commerce system.

The second experiment structure was similar with two exceptions: participants
were 5th year Master Course in Software Engineering (SE) students (23 people)
and mockup prototype was replaced by the use cases based functional require-
ments specification. Although the task remained, the purpose of the experiment
was different. The main goal was to compare participants opinions about the
presented system usability.

Main task description. Participants main task was to execute some operations
on a mockup. We assumed that proper system for this experiment purpose, should
conform two requirements:

– In the real projects customer have a extensive knowledge about the system
business domain. Thus, it was very important that participants were also
familiar with the problem domain.

– Proposed system should be more complex and less usable than application
participants might have encountered in the past. If not, participants could
solve the task by heart, basing on their previous experiences.

We decided to create a mockup of electronic shop (known domain), but we
have introduced several usability problems, mostly concerning breaking common
conventions and complicated user interface flow. To verify complexity of the
system in procedural aspects of usability, we decided to use a GOMS [5] model
(NGOMSL implementation). It enabled comparison of predicted execution times
for buying single product scenario in the proposed e-Shop and Amazon.com.
According to the GOMS simulation results, time required to complete the same
task using two systems was:

– e-Shop - 184 seconds,
– Amazon.com - 121 seconds.

It seemed that buying a single product required 52% more time to complete
in case of the e-Shop system. Thus, we assumed that proposed system fulfilled
complexity requirement.

Quick Prototyping of Web Applications 131

Participants were asked to use the e-Shop system mockup (based on 7 use
cases) in order to write down a sequence of operations one should perform on
the real system, to buy two types of products: apples and books. Each operation
entry was logged using the following format (for example see figure 4):

– use case unique id,
– step number,
– action describing single user activity put down using following format:

<Type> ’<Name>’ [:<Value>], where:
• <Type> is a type of an object, e.g. Button, Link, Edit etc.,
• ’<Name>’ is a name of an object, e.g. ’Login’, ’Surname’ etc.,
• <Value> (optional) is value used to fill a field.

UC_ID STEP Action

UC2 1 Button 'Search'

UC2 3 Edit 'Name' : Lobo

UC2 3 Combo 'Category' : Fruits

UC2 3 Button 'Search'

Fig. 4. Example of participant operations log

Although students were working individually, they could request analyst sup-
port (1 analyst was assigned to 5 students). Each analyst intervention was re-
ported and described.

Participants were explicitly provided with all data necessary to achieve the
goal (e.g. product name, category, user personal data etc.).

Is mockup self-explanatory - experiment results. Before participants were
asked to proceed to the main task, they were surveyed in order to examine their
familiarity with the e-commerce domain and use cases. Questions included in
questionnaire and results of the survey are presented in the table 2. It seems
that participants were browsing through the content of electronic shop before
and nearly all of them have bought a product at least once. Participants were
also familiar with the concept of creating functional requirements specification
with the use cases.

Before analysing participants operations logs, assumption was made that
business goal was achieved if there were no major errors concerning business
logic in the log (e.g. omitting the whole use case). We have also defined two
types of errors which might occur:

– Flow error - minor defect in business logic (e.g. omitting in execution use
case extension, when it was triggered),

– Data error - wrong input data format (form validation errors) or inaccurate
data entered.

132 Olek, Michalik, Nawrocki, Ochodek

Table 2. Summary of the domain knowledge verification survey. Possible answers
where: never, once, few times (less then 10), many times (10 or more).

Question Never Once Few times Many times
1. How many times have you been browsing
through a content of the electronic shop?

0 0 1 14

2. How many times have you been buying prod-
ucts in the electronic shops?

2 1 8 4

3. How many times have you been preparing use
cases (for how many systems)?

0 1 13 1

4. How many times have you been reading require-
ments specification written with use cases?

0 0 12 3

Another important aspect was the analysts involvement in helping participants
attaining business goal. We divided analyst interventions into two categories:

– R1 - small problems or questions concerning screens, fields validation etc.,
– R2 - more serious problems concerning understanding business logic (flow

of control in use cases),

To our surprise, all participants achieved business goal. Results summary is pre-
sented in table 3. The average analyst interventions per participant was 1.6,
including both R1 and R2 issues. Moreover, approximately 30% of the ques-
tions concerned business logic (R2). Average number of errors made by a single

Table 3. Is mockup self-explanatory experiment results summary

Participant Time[min]
∑

Flow
errors

∑
Data

errors

∑
Errors

(F+D)
R1 R2

∑
(R1+R2)

Avg 53.93 0.40 0.80 1.20 1.13 0.47 1.60
Std dev 6.64 0.63 0.86 1.26 0.99 0.64 1.40

participant was 0.40 for flow problems and 0.80 for data defects.
It seems that mockup is easy to understand. It provides information necessary

to understand the developed system business logic (average total errors number
per single use case was 0.17). It also does not require much analyst support
(average analyst support requests per use case was 1 / 4.38).

Mockup helps to unveil usability problems. In real projects customer rep-
resentatives are supposed to review requirements and find defects: e.g. business
logic defects or usability defects. The question is how to present requirements
in order to get the best feedback? Is it easier for reviewers to observe defects if
they have application screens presented together with text of requirements?

After completing experiment’s main task, participants were asked to express
their opinion about the mockup concept and usability of the e-Shop system. On

Quick Prototyping of Web Applications 133

question regarded usability of the e-Shop system, 93% of the responders stated
that presented e-Shop system, has serious design problems concerning usability.
Thus, another experiment was conducted: participants were given only use cases
without screen sketches.

Another group of students (5th year SE students) was asked to complete
the same task but using use cases for the shop. Students familiarity with the
e-commerce and use cases was also verified. Participants operations were logged
on higher level (use case steps rather then GUI controls).

Although, most of the e-Shop system usability problems concerned oper-
ational aspects, which should be easy to identify with use cases, the second
group was not so unanimous in their evaluations. Nearly the same percentage of
participants decided that system has (43%) and does not have (39%) usability
problems.

The comparison of both groups usability evaluation is presented in the figure
5. It seems that enhancing use cases scenarios with screen sketches gives a better
understanding of system possible usability pitfalls at the early stage of the design
process.

0
1
2
3
4
5
6
7
8
9

10
11
12

Mock-up Use Cases

R
es

po
ns

es

Definitely yes Yes Hard to tell No Definitely no

Fig. 5. The e-Shop system usability evaluation by mockup and Use Cases group. The
question asked was "Do you think, that presented e-Shop system is properly designed
in the matter of usability?". Possible answers where: definitely yes, yes, hard to tell,
no, definitely no.

Experiments conclusions The mockup prototype seems to fulfil it’s main role.
Firstly, it presents designed system in easy to understand way (all participants
achieved business goal). End users working with such a prototype do not require
much analyst support (1 analyst support requested per 4.38 use case was ob-
served). Thus, we belive that such a prototype is self-explanatory enough to be
accessed remotely by the end user with only limited help of analyst.

134 Olek, Michalik, Nawrocki, Ochodek

Secondly, presenting system being developed as a mockup can also help to
identify both operational and GUI usability problems. Common sense says that
this should be true for prototyping in general, but the main advantage of mockup
is that it is very quick and cheap to produce and maintain.

5 User-feedback Measurement and Analysis

5.1 Tracing Review Preparation Time

Having requirements presented in digital form (mockup is a web application)
gives another big advantage: it allows to track time that each person spent on
reviewing it (of course they should be aware, that their activity is being tracked).
It motivates customers and end users (which are usually very busy) to review
mockup more thoroughly. It also allows analyst to check which parts of mockup
were paid enough attention, and which parts should be reviewed once again.

5.2 Number of Defects Estimation

Common understanding of system requirements is crucial for the project success.
However it is often hard to fully involve customer representative into process of
requirements elicitation and elaboration (13% of project has failed because of
lack of client involvement and 12% because of wrong or incomplete requirements
[11]). Our proposal is to use asynchronous reviews to develop system require-
ments with client involvement in continuous way. We have chosen mockup as a
subject for review.

Requirements reviews can save time (decision made in this project phase have
great impact on a final product) and reduce project costs (cost of fixing errors in
requirements increases exponentially from phase to phase) [11]. However review
itself costs time and money. Distributed (in the context of place and time) access
to specification being reviewed, can reduce this cost. There is also a question of
desired level of quality. How do we know how many defects do requirements have?
Is this level accepted, or not? An old method called capture-recapture used to
count number of animals in some bounded environment [16] can help to count
number of defects in requirements specification.

As it is shown in the figure 6 asynchronous review process consists of three
phases: Review,Data Cleaning and Risk Analysis.

First phase, Review is based on n-fold review[24] and runs on mockup server.
Each reviewer is equipped with special checklist (generated from good practises
for use cases [2,3,6,9]) to let him focus on some basic problems. This list should
be combined with the business domain questions to focus reviewers on business
logic defects. In this process reviewers do not communicate and do not see defects
marked by others. Defect is identified as a violation of a checklist item attached
to particular step (or whole use case). This method allows automatic grouping
of defects for capture-recapture method.

Quick Prototyping of Web Applications 135

Review

Data Cleaning

Risk
Analysis
Results

Next phase:
Design

Positive
Risk Analysis

Negative

Fig. 6. Asynchronous review process cycle. It begins with distributed Review by a few
of inspectors, then an analyst gathers defects and cleans the data (Data Cleaning),
finally Risk Analysis is performed.

Second phase, Data Cleaning is preparing data (defects set) for the capture-
recapture analysis. To improve the capture-recapture results accuracy we must
correct wrong defects and remove duplicates.

In third phase, Risk Analysis a number of defects is estimated using capture-
recapture. These calculations can help to decide whether the quality of require-
ments is satisfactory. If the quality is good, the process finishes. If not, analyst
has to correct requirements and the process starts from the beginning. There
are four capture-recapture models that are used [12] in software reviews. The
simplest model is called two-sample model. First sample is catch, marked and
returned to population. Then second sample is catch. The population size is
calculated from simple proportion 1:

m

n
=

M

N
⇒ N =

M ∗ n

m
(1)

where:

m – the number of marked elements in second sample, n – second sample
size, M – first sample size, N – population size,

There must be four conditions fulfilled to make this computations reliable:
population must be closed, marking should be persistent, all marks needs to
be correctly recorded, each animal should have constant and equal probability
of capture. All these conditions can be easily translated into software reviews
domain [12]:

1. Specification doesn’t change during the review.
2. Inspectors don’t reveal their defects to others.
3. Inspectors must ensure that found defects are accurately documented.
4. All inspectors are provided with identical information, and the inspectors

should have similar knowledge and experience.

136 Olek, Michalik, Nawrocki, Ochodek

6 Conclusions

In the paper we have presented the concept of quick prototyping and its imple-
mentation within the UC Workbench. The pilot version of the tool has been used
by a number of local companies and the first feedback is very positive. More-
over, the experiments we have conducted suggest that the mockup can support
communication with end users in an effective way.

Acknowledgements

First of all we would like to thank the students involved in the UC Workbench
project. We would like to thank the IBM company for awarding Eclipse Inno-
vation Grant to UC Workbench project. It allowed students focus on the devel-
opment work. This research has been financially supported by the Ministry of
Scientific Research and Information Technology grant N516 001 31/0269.

References

1. UC Workbench project homepage. http://ucworkbench.cs.put.poznan.pl.
2. Steve Adolph, Paul Bramble, Alistair Cockburn, and Andy Pols. Patterns for

Effective Use Cases. Addison-Wesley, 2002.
3. Alistair Cockburn. Writing Effective Use Cases. Addison-Wesley, 2001.
4. Larry L. Constantine and Lucy A. D. Lockwood. Software for Use: A Practical

Guide to the Models and Methods of Usage-Centered Design. ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA, 1999.

5. Kieras D. A guide to GOMS model usability evaluation using NGOMSL. The
Handbook of Human-Computer Interaction, 1996.

6. IEEE. IEEE Recommended Practice for Software Requirements Specifications
(IEEE Std 830-1998), 1998.

7. Ivar Jacobson. Use Cases - Yesterday, Today, and Tomorrow. Technical report,
Rational Software, 2002.

8. McNabb K. ECM Growth Outpaces The Overall Software Market. Technical
report, Forrester Research, 2005.

9. Daryl Kulak and Eamonn Guiney. Use Cases: Requirements in Context, Second
Edition. Addison-Wesley Professional, July 2003.

10. James A. Landay and Brad A. Myers. Sketching storyboards to illustrate interface
behaviors. In CHI ’96: Conference companion on Human factors in computing
systems, pages 193–194, New York, NY, USA, 1996. ACM Press.

11. Dean Leffingwell and Don Widrig. Managing Software Requirements: A Use Case
Approach, Second Edition. Addison-Wesley Professional, May 2003.

12. James Miller. Estimating the number of remaining defects after inspection. Soft-
ware Testing, Verification & Reliability, 9(3):167–189, 1999.

13. Jerzy Nawrocki and Łukasz Olek. UC Workbench - A Tool for Writing Use Cases.
In 6th International Conference on Extreme Programming and Agile Processes,
volume 3556 of LNCS, pages 230–234. Springer Verlag, Jun 2005.

14. Jerzy Nawrocki and Łukasz Olek. Use-Cases Engineering with UC Workbench. In
Krzysztof Zieliński and Tomasz Szmuc, editors, Software Engineering: Evolution
and Emerging Technologies, volume 130, pages 319–329. IOS Press, oct 2005.

Quick Prototyping of Web Applications 137

15. CJ Neill and PA Laplante. Requirements Engineering: The State of the Practice.
Software, IEEE, 20(6):40–45, 2003.

16. D. L. Otis. Statistical inference from capture data on closed animal populations.
Wildlife Monographs, 62(62), 1978. Wildlife Society.

17. Marc Rettig. Prototyping for tiny fingers. Communication of the ACM, 37(4):21–
27, 1994.

18. Jim Rudd, Ken Stern, and Scott Isensee. Low vs. high-fidelity prototyping debate.
interactions, 3(1):76–85, 1996.

19. G. Schneider and J. P. Winters. Applying Use Cases: A Practical Guide. Addison-
Wesley, 1998.

20. Carolyn Snyder. Paper Prototyping: The Fast and Easy Way to Define and Refine
User Interfaces. Morgan Kaufmann Publishers, 2003.

21. Yan Sommerville and Pete Sawyer. Requirements Engineering. A Good Practice
Guide. Wiley and Sons, 1997.

22. Robert A. Virzi, Jeffrey L. Sokolov, and Demetrios Karis. Usability Problem Iden-
tification Using Both Low- and High-Fidelity Prototypes. In Proceedings of the
CHI Conference. ACM Press, 1996.

23. Miriam Walker, Leila Takayama, and James A. Landay. High-Fidelity or Low-
Fidelity, Paper or Computer? Choosing Attributes When Testing Web Applica-
tions. In Proceedings of the Human Factors and Ergonomics Society 46th Anuual
Meeting, pages 661–665, 2002.

24. Yuk Kuen Wong. Modern Software Reviews: Techniques and Technologies. IRM
Press, 2006.

