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Improving the reliability of transaction identification in use cases✩

M. Ochodeka,∗, B. Alchimowicza, J. Jurkiewicza, J. Nawrockia

aPoznan University of Technology, Institute of Computing Science

ul. Piotrowo 2, 60-965 Poznań, Poland

Abstract

Context: The concept of transactions is used in Use Case Points (UCP), and in many other functional size measure-
ment methods, to capture the smallest unit of functionality that should be considered while measuring the size of
a system. Unfortunately, in the case of the UCP method at least four methods for use-case transaction identification
have been proposed so far. The different approaches to transaction identification and difficulties related to the analysis
of requirements expressed in natural language can lead to problems in the reliability of functional size measurement.

Objective: The goal of this study was to evaluate reliability of transaction identification in use cases (with the methods
mentioned in the literature), analyze their weaknesses, and propose some means for their improvement.

Method: A controlled experiment on a group of 120 students was performed to investigate if the methods for trans-
action identification, known from the literature, provide similar results. In addition, a qualitative analysis of the
experiment data was performed to investigate the potential problems related to transaction identification in use cases.
During the experiment a use-case benchmark specification was used. The automatic methods for transaction identifi-
cation, proposed in the paper have been validated using the same benchmark by comparing the outcomes provided by
these methods with on-average number of transactions identified by the participants of the experiment.

Results: A significant difference in the median number of transactions was observed between groups using different
methods of transaction identification. The Kruskal-Wallis test was performed with the significance level α set to 0.05
and followed by the post-hoc analysis performed according to the procedure proposed by Conover. Also a large intra-
method variability was observed. The ratios between the maximum and minimum number of transactions identified
by the participants using the same method were equal to 1.96, 3.83, 2.03, and 2.21. The proposed automatic methods
for transaction identification provided results consistent with those provided by the participants of the experiment
and functional measurement experts. The relative error between the number of transaction identified by the tool and
on-average number of transactions identified by the participants of the experiment ranged from 3% to 7%.

Conclusions: Human-performed transaction identification is error prone and quite subjective. Its reliability can be
improved by automating the process with the use of natural language processing techniques.

Keywords: Use-case transactions, Use Case Points, functional size measurement, natural language processing

1. Introduction

Software effort estimation is one of the crucial tasks
performed at the early stages of software development
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to mitigate the risk of budget and schedule overruns.
A common approach is to use models that take the size
of a system together with factors describing organiza-
tion productivity as an input, and provide effort estima-
tion as an outcome.

The size of software systems can be measured using
code size metrics, such as source lines of code (SLOC).
However, these kinds of metrics are more useful when
the code of the system is available, because they might
be difficult to obtain at early stages of the software de-
velopment.

Another approach is to measure the size of a system
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based on its functionality. This idea is called functional
size measurement (FSM). Probably the most recogniz-
able FSM method is the Albrecht’s Function Points
Analysis method (FPA) [1]. Because FSM methods em-
ploy requirements as an input, they can be effectively
used for effort estimation at early stages of software de-
velopment.

In order to be able to measure such an abstract con-
cept as functionality, the notion of transaction was in-
troduced. It is used to capture the smallest unit of inter-
action that should be considered while measuring the
size of a system. For instance, transactions are used
in many derivatives of the Albrecht’s FPA method [1],
e.g, IFPUG FPA [2]; Mk II FPA [3]; as well as by
the use-case-based size/effort estimation methods like
Karner’s Use Case Points (UCP) [4], Transactions [5],
or TTPoints [6, 7].

In order to use transactions to effectively measure
the functional size of a system, there has to be a stan-
dard procedure for their identification. In the case of
FPA great efforts have been made to develop standards
and manuals which cover also transaction identification
process [8, 9]. A much bigger problem could be ob-
served for the UCP method, for which many different
approaches to transactions identification have been pro-
posed so far [4, 5, 10, 11].

In that context two questions arise whether all the def-
initions and methods for transaction identification in use
cases provide reliable results, and whether they actually
define the same concept? Answering these questions is
especially important if historical data is supposed to be
used for effort estimation or productivity benchmarking.

Therefore in this paper, we would like to discuss
and empirically investigate differences and similarities
between the different methods for use-case transaction
identification, in order to be able to answer the question
whether the choice of the method can affect the results
of the use-case-based size measurements.

Another important problem related to reliability of
use-case-based FSM methods is that transactions are
identified based on requirements expressed in natural
language, which is usually ambiguous. Therefore, dif-
ferent people using the same method can identify a dif-
ferent number of transactions in the same requirements
specification.

To mitigate the problems related to reliability of
transaction identification in use cases, we propose to au-
tomatized the process of transaction identification, so it
can be performed by a software tool instead of people.

The proposed methods for automatic transaction
identification were implemented as extensions to the
UCWorkbench tool [12]. The implemented methods are

able to identify transactions according to the different
definitions of use-case transaction and provide objective
results.

The paper is organized as follows. In Section 2,
a short introduction to use cases is presented. Then in
Section 3, the UCP method is briefly described. The his-
tory of use-case transactions is presented and discussed
in Section 4. The experiment in which four methods for
transaction identification were compared is presented in
Section 5. The proposed methods for automatic transac-
tions identification are presented in Section 6, and eval-
uated in Section 7. Finally, in Section 8 the most impor-
tant findings are summarized.

2. Use cases

Use cases were introduced by Ivar Jacobson in
1986 [13] as a mean for functional requirements de-
scription in the telecommunication industry. Since then,
use cases have gained a lot of attention and have been
wildly applied in the area of requirements elicitation in
the software development environment.

Use cases can be presented in two different, but com-
plementary, ways: in the form of diagrams and in the
textual form. Use-case diagram allows to present rela-
tionships between certain functions, while textual use
cases (see Figure 1) allow to show the details of a re-
quirement.

Main flow:

1. Administrator chooses an option to browse defined 

    categories of products.

2. System presents all defined categories.

Add a product category

Alternative and extending flows:

5.A. Not all required data was provided.

   5.A.1. System informs about missing data.

   5.A.2. Back to the step 4.

6.A. Administrator would like to associate the new category 

        with some of the existing categories.

   6.A.1. Administrator selects categories that are related to the 

             added category and chooses the option to associate them.

   6.A.2. System confirms that categories are now associated.

3. Administrator chooses an option to add a new category.

4. System asks for the data concerning the new category.

5. Administrator enters the data and confirms the operation.

6. System informs that the new category was added.

Figure 1: An example of textual representation of a use case.

Every use case in the textual form consists of three
main elements which allow to describe a requirement
from three different angles. The first element is a mean-
ingful name which should communicate what require-
ment (user’s goal) the use case describe. Set of steps
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constituting the main flow of actions is the second ele-
ment of a well written use case. The main flow presents
the interaction (in the form of a sequence of steps) be-
tween an actor and the system being built. The interac-
tion should demonstrate the typical path of obtaining the
goal expressed in the use-case name. Additional paths
describing all the alternatives and extensions to the main
flow are the third element of every use case.

One of the main characteristics of use cases is that
all their elements are written in a natural language what
makes them easy to write and read by both analysts and
customers.

Apart from use-cases themselves, a Software Re-
quirements Specification (SRS) [14] based on use cases
usually consists of two additional parts: actors defini-
tions, describing the main actors which interact with the
system being built, and domain-objects definitions de-
scribing all the objects of the domain in which the sys-
tem will operate.

3. Use Case Points

Use Case Points is probably the most recognizable
and discussed use-case-based method for effort esti-
mation. The procedure of counting UCP proposed by
Karner [4] consists of the following steps:

1. Calculate Unadjusted Actors Weights (UAW). As-
sign each of the actors to one of three categories
based on the type of interface it uses to communi-
cate with the system: simple — API, average —
protocol or terminal, complex — GUI. For each
category count the total number of assigned actors,
and multiply it by the weight assigned to the cate-
gory (simple=1, average=2, and complex=3). Cal-
culate UAW as a sum of products of number of ac-
tors assigned to categories and their weights.

2. Calculate Unadjusted Use Case Weights (UUCW).
Count the number of transactions in each use case.
Assign use cases into one of three categories based
on the number of transactions: simple (T < 4) ,
average (4≤ T ≤ 7), and complex (T > 7). Calcu-
late UUCW as a sum of products of the number of
use cases assigned to categories and their weights
(simple=5, average=10, and complex=15).

3. Assess Technical Complexity Factors (TCF). Eval-
uate the influence of each technical complexity fac-
tor, presented in Table 1, by assigning value be-
tween 0 and 5. Calculate TF_Prod as a sum of
products of the factors weights and their influence.
Calculate TCF according to Equation 1.

TCF = 0.6 + (0.01 × TF_Prod) (1)

4. Assess Environmental Factors (EF). Evaluate the
influence of each environmental factor, presented
in Table 1, by assigning value between 0 and 5.
Calculate EF_Prod as a sum of products of the
factors weights and their influence. Calculate EF
according to Equation 2.

EF = 1.4 + (−0.03 × EF_Prod) (2)

5. Calculate Unadjusted Use Case Points (UUCP) ac-
cording to Equation 3.

UUCP = UAW + UUCW (3)

6. Calculate Use Case Points (UCP) according to
Equation 4.

UCP = UUCP × TCF × EF (4)

7. To obtain the effort estimation measured in man-
hours, one has to multiply UCP by Productivity

Factor (PF). The default value for PF proposed by
Karner was 20 hours per UCP. Schneider and Win-
ters [15] proposed rule for choosing PF. They sug-
gested to count the number of environmental fac-
tors F1–F6 which influence is predicted to be less
than 3, and factors F7–F8 which influence is pre-
dicted to be greater than 3. If the counted total is
equal to two or less, 20 [h/UCP] should be used; if
the total is between 3–4, PF is set to 28 [h/UCP]; if
the calculated number is greater than 4, the highest
value of 36 [h/UCP] should be used.

Unfortunately, the UCP method proposed by Karner
is not formally valid, because it involves calculations
that are based on several algebraically inadmissible
scale-type transformations [16, 17] (similar problems
were observed for Albrecht’s FPA [18]). For example,
the complexity of each use case is first measured using
the ratio scale — the number of transactions, which is
then transformed to the three-point ordinal scale (sim-
ple, average, and complex), and again transformed back
to a ratio-type scale by the arbitrary assignment of the
weights. Therefore, the last transformation and further
calculation of UUCW as a sum of products of the num-
ber of use cases assigned to categories and their weights
are not mathematically valid operations.

4. Use-case transactions

The notion of use-case transaction is used in UCP
to calculate UUCW (see Section 3). Transactions are
also a basis for other use-case-based FSM methods, i.e.,
Transactions [5] and TTPoints [6].

The use-case transaction was defined, for the first
time, by the inventor of use cases — Ivar Jacobson. He
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Table 1: Technical Complexity Factors and Environmental Factors.

Technical Complexity Factors

Factor Description Weight

T1 Distributed system 2
T2 Performance 1
T3 End-user efficiency 1
T4 Complex processing 1
T5 Reusable code 1
T6 Easy to install 0.5
T7 Easy to use 0.5
T8 Portable 2
T9 Easy to change 1
T10 Concurrent 1
T11 Security features 1
T12 Access for third parties 1
T13 Special training required 1

Environmental Factors

Factor Description Weight

F1 Familiarity with the standard process 1.5
F2 Application experience 0.5
F3 Object-oriented experience 1
F4 Lead analyst capability 0.5
F5 Motivation 1
F6 Stable requirements 2
F7 Part-time workers -1
F8 Difficult programming language -1

stated that each use-case transaction should consist of
four types of actions [19, 20]:

• actor’s request — the main actor sends request and
data to the system;

• system validation — the system validates the given
data;

• system internal-state change — the system per-
forms operations leading to change of its internal
state;

• system response — the system responds to the ac-
tor with the operation result.

Therefore, the Jacobson’s use-case transaction can be
understood as a “round trip”, where actor stimulates the
system, and the system provides a response to that stim-
ulus. This kind of operation is atomic from the actor’s
point of view. The initial idea was that each step should
constitute a transaction, however, it seems that nowa-
days using separate steps for actor’s requests and system
responses seems to be a more favourable approach (e.g.
see use cases in [21, 22, 23]).

The concept of use-case transaction was applied
to FSM and effort estimation by Karner in his UCP
method [4]. The definition of transaction used in
UCP [17], states that use-case transaction is “a set of
activities, which is either performed entirely, or not at
all.” (In the definition presented by Anda [24], the term
“event" was used instead of “a set of activities".) It
seems that this definition follows the idea of a “round
trip” — transaction is a set of activities performed be-

tween actor and the system. However, the interpretation
of the definition is not clear, as in two examples of use
cases presented by Anda et al. [24, 25] each actor’s and
system steps are counted as separate transactions.

Another definition was presented by Diev [11], which
states that use-case transaction has to satisfy two condi-
tions:

• UCT-C1. Use-case transaction is the smallest unit
of activity that is meaningful from the actor’s point
of view.

• UCT-C2. Use-case transaction is self-contained
and leaves the business of the application being
sized in a consistent state.

Diev’s definition was also used as a basis for defining
the semantic transaction types, which will be discussed
separately in Section 4.1.

Another approach to transactions identification was
proposed by Robiolo and Orosco [5]. They suggested
to count the number of stimuli as the number of transac-
tions. In that case, the actor is the subject of the sentence
and the stimulus triggered by the actor is the verb.

Recently, Collaris and Dekker [10] attempted to clar-
ify the procedure of transactions identification. They re-
ferred to the Jacobson’s “round trip" definition of trans-
action as the proper one. They also commented on ex-
isting techniques for transactions identification. For in-
stance, they made a remark that counting transactions is
not the same as counting stimuli. They also disagreed
with Diev [26], who stated that it is possible that more
than one scenario can constitute a single transaction.
Their remark was that there are at least as many trans-
actions as there are flows. For instance, the success and
the failure of the same operation should be counted as
two transactions.

The question arises who is right, and who is wrong?
In our opinion neither Diev nor Collaris and Dekker are
wrong. The problem could be that the same term “use-
case transaction” is used by different authors to name
different concepts. Diev’s definition of transaction is
based on the elementary process known from Function
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Point Analysis. Garmus and Herron [2] explained ele-
mentary process by presenting a scenario of filling in a
form. Assume one has to fill a form consisting of three
pages. The elementary process will be finished when all
of these pages are completed and submitted, because the
intention was to fill in the whole form (submitting a sin-
gle page is neither meaningful nor leaves a business in
a consistent state). If the “round trip” definition of use-
case transaction is considered, those three steps would
constitute three different transactions — if all sub-forms
were submitted one after another.

4.1. Semantic transaction types

Fetcke et al. [27] who proposed mapping between use
cases and Function Point Analysis, did not find an easy
way to map interaction in use-case scenarios to FPA
transactions. They suggested to perform analysis ac-
cording to the Function Points counting rules instead.
Therefore, it seems that different approaches to analysis
of use cases should be employed when counting Jacob-
son’s “round trip" transactions, and elementary-process-
based transactions.

In order to be able to identify an elementary-process-
based transaction, one has to understand what meaning-
ful goals can be obtained by the actor within the sce-
narios of the use case being analyzed. If one looks at
transactions from the semantic point of view, it could
be observed that some of transactions in use cases share
similar goals. Based on such similarities of goals, 12
semantic transaction-types have been distinguished so
far [6]:

1. Create (C) - describes creating a new instance of
a domain object. Data provision is the central point
of this kind of transactions. It could be followed by
the validation of the entered data and presentation
of the results.

2. Retrieve (R) - allows an actor to retrieve some
existing data. It usually consists of two actions:
choice of some retrieve option, and displaying the
requested data.

3. Update (U) - describes how to alter the already ex-
isting domain objects. Similar to the Create trans-
action. The main focus is on the data provision,
however, in this case the domain object needs to
exist before this type of transaction can be per-
formed.

4. Delete (D) - describes how the already existing do-
main object is removed from the system. This type
of transaction, usually, includes the following ac-
tions: choice of the required domain object, selec-
tion of a delete option, and confirmation provided
by the system.

5. Link (L) - after performing this type of transac-
tion two or more objects, which are not a com-
posite, are associated. It involves choosing the do-
main objects, optionally accompanied by the pro-
vision of the data; choosing a link option; option-
ally performing some validation operations; and fi-
nally presenting the results.

6. Delete Link (DL) - this is an opposite type of trans-
action to the Link transaction. Here, the selected
links between domain objects are removed.

7. Asynchronous Retrieve (AR) - describes the pro-
cess of domain object retrieval (similar to the
Retrieve transaction), however, in this case the
fetched data is not provided as a direct response
(e.g., sending an e-mail). Transfer of the data is
the main action in this type of transactions.

8. Dynamic Retrieve (DR) - another type of transac-
tions describing data retrieval. In this case the set
of criteria upon which the data is retrieved needs to
be provided.

9. Transfer (T) - allows the transfer of numerous do-
main objects from one actor to another. After the
object is transferred it is managed by the receiver.

10. Check Object (CO) - the only goal of perform-
ing this kind of transaction is to validate the data
against some specified rules.

11. Complex Internal Activity (CIA) - can be used in
order to describe complex operation performed by
the system. The action which is the main point of
this type of transactions is usually specific to the
system being described (e.g., invoking some com-
plex algorithm).

12. Change State (CS) - very similar to the Update
transaction, however, in this case the change made
to the domain object influences its behaviour in the
system.

In Figure 2 one can find an example of a simple use case
with three1 different transactions: Retrieve (1), Create
(2), and Link (3). The first transaction describes how the
existing data is fetched and presented to the user. Cre-
ating new domain object, and adding it to the system is
the main purpose of the second transaction. It is worth
mentioning that steps from the alternative flows section
can also be a part of the transaction (or even create a sep-
arate one). The third transaction presents how different

1Note that if the “round trip” definition of a transaction was con-
sidered, the second transaction presented in Figure 2, would be de-
composed to three transactions: choice of options followed by the
presentation of the form (steps 3, 4); successful filling in the form
(steps 5, 6); failing to fill in the form (steps 5, 5.A.1, 5.A.2).
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Main flow:

1. Administrator chooses an option to browse defined 

    categories of products.

2. System presents all defined categories.

Add a product category

Alternative and extending flows:

5.A. Not all required data was provided.

   5.A.1. System informs about missing data.

   5.A.2. Back to the step 4.

11

12

12

13

6.A. Administrator would like to associate the new category 

        with some of the existing categories.

   6.A.1. Administrator selects categories that are related to the 

              added category and chooses the option to associate them.

   6.A.2. System confirms that categories are now associated.

3. Administrator chooses an option to add a new category.

4. System asks for the data concerning the new category.

5. Administrator enters the data and confirms the operation.

6. System informs that the new category was added.

Figure 2: An exemplary use case with transactions marked using se-
mantic transaction-types.

instances of domain objects are being connected with
each other.

5. Experimental comparison

The fact that discussed definitions of use-case trans-
action seem to have different origins is important, how-
ever, the more important question regarding the reliabil-
ity of UCP is whether they provide the same on-average
results when used by people?

In order to be able to answer this question a controlled
experiment was conducted. Its goal was to investigate
whether there is a cause-effect relationship between the
choice of the method for transaction identification and
on-average number of identified transactions.

5.1. Experiment design

The independent variable considered in the experi-
ment was a method used to identify use-case transac-
tions (four values considered). The dependent variable

was the number of transactions identified in a use-case-
based requirements specification.

Transaction identification methods. Four methods
for transactions identification where investigated during
the experiment:

• M1 — counting stimuli-verbs according to Robi-
olo and Orosco [5];

• M2 — identifying transactions based on the defi-
nition provided in Karner’s UCP [4];

• M3 — identifying transactions based on the defi-
nition provided in UCPm [11], which is based on
the elementary process taken from Function Point
Analysis;

• M4 — identifying transactions by using semantic
transaction types described in Section 4.1.

Software Requirements Specification. Number of
identified transactions can depend both on the struc-
ture of use-cases and author’s writing style. To mitigate
the risk of using a specific requirements specification
(i.e., too easy, or too difficult to analyze), we decided to
use the benchmark requirements specification [28]. It
is an instance of a typical use-case-based requirements
specification, derived based on the analysis of 524 use
cases coming from 16 projects.

Participants. Participants in the experiment were
120 3rd-year students, who were in the middle of the
second semester of the two-semester Software Engi-
neering course. The participants were familiar with the
concept of use cases as they took part in a lecture about
use-case-based requirements specifications. Their tasks
during the laboratory classes were to create and review
the requirements in a form of use cases for a small
software project. During the lecture and the laboratory
classes, the students were taught what the structure of
a use case is, how to write use cases, and what are the
good practices for authoring use-cases.

Participants were randomly assigned to four groups:
G1 that was asked to use the method M1; group G2 used
the method M2; group G3 used the method M3; and G4

used the method M4.

5.2. Operation of the experiment

The experiment was executed at the Poznan Univer-
sity of Technology in April 2010.

Prepared instrumentation. Each participant in the
experiment was provided with the handouts that con-
tained a description of the UCP method, instructions,
and tables for collecting the number of transactions for
each use case. Participants also had access to the pre-
sentation with the definition of the transaction identifi-
cation method appropriate for their group, together with
examples of its usage.

During the execution of the experiment participants
used a web-based system that provided the interactive
version of the requirements specification. It enabled
participants to visually tag transactions in each use case.

As a result, transactions identified by each partic-
ipant were automatically recorded by the system, to-
gether with the exact steps constituting each transaction,
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Figure 3: Box-plots presenting the number of transactions identified
by the participants of the experiment.

and independently by each participant on the provided
forms — in that case only the number of transaction in
each use case was recorded.

In order to preserve homogeneity of the samples,
the participants were asked whether they used the UCP
method, or identified transactions before.

Execution. During the execution of the experiment
students were supervised by lecturers, who were obliged
to answer questions concerning the UCP method, ex-
cluding those referring to the transaction identification
process. Participants had 90 minutes to acquaint them-
selves with the transaction identification method appro-
priate for their group, and identify transactions in 34 use
cases.

5.3. Analysis and interpretation

Data verification. After collecting and reviewing
participants’ forms (electronic and paper version) 2 of
them were rejected because of their incompleteness.
Another 7 observations were rejected because we sus-
pected that students did not participated seriously in the
experiment (e.g., random steps were tagged as transac-
tions).

Descriptive statistic. Before proceeding to further
analysis, the experiment data was investigated to find
and handle outlying observations. After completing this
process 2 outlying observation were rejected. Figure 3
presents the distributions of the total number of transac-
tions identified by the participants of each group. De-
scriptive statistics are presented in Table 2.

As a result 109 forms were classified for the further
analysis (G1–30, G2–25, G3–26, G4–28).

Table 2: Number of transactions identified by the participants of the
experiment (after cleaning).

G1 G2 G3 G4

#1 75 74 46 54
#2 54 92 44 65
#3 72 46 73 77
#4 90 65 44 47
#5 87 53 46 84
#6 69 45 48 51
#7 57 69 73 59
#8 68 116 51 82
#9 57 73 60 45

#10 62 64 57 73
#11 64 102 52 38
#12 74 55 59 55
#13 71 101 59 55
#14 62 138 52 73
#15 58 83 63 55
#16 72 68 36 58
#17 106 83 43 52
#18 66 36 43 46
#19 73 60 52 48
#20 72 86 61 73
#21 59 58 60 50
#22 64 70 70 71
#23 64 84 52 57
#24 100 65 47 52
#25 58 60 46 53
#26 83 38 57
#27 57 57
#28 99 46
#29 98
#30 86

N 30 25 26 28
Min 54 36 36 38

1st Qu. 62 60 46 50.75
Median 70 69 52 55
Mean 72.57 73.84 52.88 58.32

3rd Qu. 81 84 59.75 66.50
Max 106 138 73 84

The next step was to check whether samples come
from a normally distributed population. The initial ob-
servation made based on the analysis of Q-Q plots [29]
was that the assumption about samples normality might
be violated. This suspicion was further confirmed by
the Shapiro-Wilk test [30]. Therefore, we decided to
use a non-parametric statistical tests.

5.3.1. Quantitative analysis

Central tendency. Methods M1, M2, M3, and M4
could be treated as measurement instruments for count-
ing transactions in use cases. By investigating central
tendencies of the experiment samples, one can inves-
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tigate whether the methods on-average provide similar
results.

Therefore, the null hypothesis was formulated that
the median number of transactions identified in the same
specification with the use of all four methods were
equal:

H0 : θG1 = θG2 = θG3 = θG4 (5)

The alternative hypothesis was formulated that the
median number of identified transactions was not equal
for at least two groups:

H1 : Not H0 (6)

The observed normalized effect size2 expressed as
Cohen’s d coefficient [31] was “large”3 for groups G1–
G3, G1–G4, G2–G3, and G2–G4 (the observed values
of d ranged from 0.86 to 1.55). The observed effect size
between groups G3 and G4 was “medium” (d = 0.49).
The smallest effect size was observed for groups G1 and
G2 (d = 0.07).

To test the hypotheses we used the Kruskal-Wallis
test [32], which is a non-parametric version of ANOVA.
The significance level α was set to 0.05. The obtained
value of the χ2 statistics was equal to 31.4347 (df=3).
It would allow us to reject the null hypothesis with
the significance level less than assumed 0.05 (p-value
= 6.885 × 10−7). Therefore, we concluded that there is
a significant difference between the median number of
transactions of at least two groups.

Then, we performed the post-hoc pairwise compari-
son of subgroups according to the procedure proposed
by Conover [33]. For each pair of samples two val-
ues were calculated: the difference between mean ranks,
and the critical difference of the mean ranks. If the dif-
ference between mean ranks is greater than the calcu-
lated critical value, the difference is treated as signifi-
cant. According to the results of the analysis, presented
in Table 3, the differences between the median number
of transactions seemed to be not significant only for the
comparisons between groups G1–G2 and G3–G4.

The different on-average number of transactions
obtained by participants using Karner’s [4], and
Diev’s [11] methods supported the thesis that the defini-
tions, which have different origins, might define differ-
ent constructs in use cases. (However, the quantitative
results are not a sufficient evidence on their own.)

2Please note that retrospectively calculated effect size only approx-
imates the real effect size in the populations from which the samples
were drawn.

3According to Cohen [31] effect size is perceived as “small” if the
value of d is equal to 0.2, as “medium” if the value of d is equal to
0.5, and as “large” if d is equal to 0.8.

Table 3: The post-hoc analysis [33] of Kruskal-Wallis test (in each
cell, column vs. row: difference of the mean ranks; the critical differ-
ence of the mean ranks — in brackets; * denotes a statistically signif-
icant difference).

G1 G2 G3 G4

G1
G2 3.56 (14.49)
G3 40.42* (14.34) 36.86* (14.99)
G4 28.97* (14.06) 25.41* (14.73) -11.45 (14.58)

In addition, lack of significant differences in on-
average results between groups G1–G2 supported the
thesis that stimuli-verbs method proposed by Robiolo
and Orosco [5] can be treated as a heuristic approach
for identification of transaction based on the Karner’s
definition of use-case transaction. The same relates to
groups G3–G4, however, the semantic transaction-types
by their definition are supposed to comply with Diev’s
definition of use-case transaction.

The observed difference in on-average number of
transactions between the groups is also important for the
reliability of use-case-based size metrics. For example,
the ratio between the mean number of transactions for
the groups G2 and G3 was equal to 1.4. Such differ-
ence would have a visible impact on the estimated effort
if one used the number of transactions as a functional
size measurement [5]. If the productivity factor was cal-
culated for the same project, based on two variants of
the size measure, and then cross-used to estimate effort
for the project, the magnitude of relative error (MRE)
would range from 0.3 to 0.4. Moreover, if the extreme
size measures provided by the participants belonging to
these groups were considered, the MRE would range
from 0.7 to 2.8.

An additional aspect that should be considered is the
influence of the use-case categories, used in the UCP
method to calculate the Unadjusted Use Case Weights
(see Section 3). The distributions of UUCW calculated
for the participants of each group, presented in Figure 4,
seem to confirm the observations made for the number
of transactions. However, because of the cut-off effect
of complexity classes, if on-average values of UUCW
in groups G2 and G3 were used to estimate effort with
UCP, the MRE would be equal to 0.1 in both cases.
Again, if extreme values of UUCW in the same groups
were considered, the MRE would range from 0.4 to 0.6.

Variability. Another important aspect is the inner
variability in the results obtained by participants using
the same method. The lesser the variability observed for
a group, the more reliable is the procedure for transac-
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Figure 4: Box-plots presenting the Unadjusted Use Case Weights
(UUCW) calculated based on transactions identified by the partici-
pants of the experiment.

tion identification.
The observed inner variability in the number of trans-

actions for all groups was high. The ratios between the
maximum and minimum number of transactions were
equal to 1.96, 3.83, 2.03, and 2.21. However, the con-
clusions concerning the reliability of investigated meth-
ods for transactions identification that were drawn based
only on the quantitative analysis of dispersion, should
be treated with caution. One has to keep in mind that
the students did not have previous experience in count-
ing transactions in use cases.

5.3.2. Qualitative analysis

Data collected by the system supporting the experi-
ment allowed us to make some observations concerning
the usage of methods for transactions identification.

The most frequent problem for the participants, who
used the method M1, was a choice of verbs that are
stimuli. It appeared that different people could choose
different verbs as stimuli. While verbs which describe
typical interaction with the system (e.g., “submit”, “se-
lect”, or “enter”) were rather equally marked as stimuli,
verbs describing more general activities (e.g., “find”,
“browse”, or “go”) were misleading, and often led to
different interpretations.

Two main issues were observed regarding the method
M2. The first one was concerned with sequences of
steps performed by the same actor. If there are two or
more consecutive steps performed by the same actor,
the system responses between those steps are not ex-
plicitly defined. As a result we observed different ways
of dealing with this case: either by selecting the whole

sequence as one transaction, or by selecting each of the
steps as separate transactions. The second problem was
related to how alternative flows were handled. Some of
the participants tended to mark alternative flows as parts
of the transactions identified in the main flow. However,
there was also a group of participants who marked each
of the alternative flows as a separate transaction.

The main problem regarding the methods M3 and M4
was a granularity of transactions. There was a group
of use cases that all of them consisted of three parts:
preparation for the main action (e.g., choice of option),
the main action itself (e.g., providing the data), presen-
tation of the results (e.g., the system presents added ob-
ject). Some participants treated all three parts as a sin-
gle transaction (the goal of transaction was the same as
goal of the use case), while other distinguished separate
transactions for each part.

The notion of semantic transaction types is the main
difference between the methods M3 and M4. The need
of pointing the right transaction type made transaction
markings more consistent and cohesive. Still a few stu-
dents had problems with distinguishing between some
of the types (e.g., Retrieve and Dynamic Retrieve, or
Update and Change State). Another issue with the
method M4 was that inexperienced user sometimes mis-
led the actions of a given type with the transaction of
similar type. For instance, the validation action which
was a part of the Create transaction, was sometimes
marked as a separate Check Object transaction.

5.3.3. Threats to validity

In the case of threats to internal validity the potential
problem could be a difference in the students level of
knowledge regarding UCP and use cases. To exclude
participants with the previous experience with using the
UCP method, those who admitted to already used the
method would not be considered. All participant also
had some experience in writing and reviewing use cases,
as described in Section 5.1.

Another factor that could influence the outcome of
the experiment was the quality of the instrumentation
provided to the participants. To mitigate that risk we
provided definitions, and examples as they were pub-
lished in the original papers. If there was insufficient
number of examples available for a method in the orig-
inal papers, additional examples were prepared by the
authors of this study.

In case of threats to the external validity there is also
the problem of generalizing the outcome of the experi-
ments which participants are students to the population
of software companies employees. However, in the case
of the experiment regarding methods for transactions
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identification, it was important that participants had no
previous experience in that area, because it could inter-
fere with the provided transaction definitions. It is also
probable, however, that the more experienced partici-
pants would be also more convergent in their responses.
Therefore, the observed differences in the variability
should not be taken as exact measure of variability that
would be observed for the professionals. On the other
hand, in case of our previous case study [34] with six
experienced estimators who were not forced to use any
specific definition of transaction, the difference in the
maximum and minimum number of identified transac-
tions was also high (a factor of 2.1).

6. Automatic transaction identification

The main conclusion from the conducted experiment
is that the choice of the method for transaction identifi-
cation can have a visible impact on the values of the use-
case-based FSM. Therefore, if an organization would
like to employ use-case transactions for effort estima-
tion and productivity benchmarking, it has to decide to
consistently use only one method for their identification.
In addition, a set of counting rules should be developed
to reduce the intramethod variability.

Another approach to mitigate the problems related
to reliability of transaction identification is to automate
the identification process. The main advantage of us-
ing software tools instead of expert knowledge is that
the tool should always provide the same results when
used to analyze the same software requirements specifi-
cation. Another benefit is that the software tool is more
efficient than people. Therefore, the number of trans-
actions could be re-calculated after each change to the
requirements.

Some tools for automatic transaction identification in
use cases have been proposed so far [34, 35, 36]. They
either process UML diagrams in XMI format or ana-
lyze use cases in the textual form with the use of nat-
ural languages processing techniques (NLP). Unfortu-
nately, these tools do not take into consideration differ-
ent definitions of transactions. If a tool was able to iden-
tify transactions based on different definitions, it could
support effort estimation based on different historical
databases, even if transactions in such databases were
identified using different methods. Moreover, it would
help members of a development team to verify their
counts, or to help them to investigate which method they
actually use. Finally, the same project can be measured
using different methods to obtain a set of size estima-
tions (e.g., the best and worst cases). Therefore, we
would like to propose a set of approaches to automatic

transaction identification based on stimuli [5], “round
trips" [10, 19], and elementary-process-based transac-
tions, using the semantic transactions types [6].

6.1. Graph representation of use cases

The flow of control in a use case can be represented
by a directed graph G(V, A). Each vertex (V) represents
a single step of a use case — expressed in a natural
language. Possible transitions between steps are rep-
resented by arcs (A). In addition, arcs can be labeled
with descriptions of events or conditions, which start al-
ternative scenarios. An example of a control flow graph
for a use case is presented in Figure 5 (sub-figure a).

6.2. Actions and their identification

Unfortunately, the basic graph representation is in-
sufficient for a software tool to automatically identify
transactions in use cases. First of all, a single step
can consist of more than one action. For instance, in
step 5 of the use case presented in Figure 5, there are
two actions performed by the actor called administra-
tor. In addition, it is necessary to distinguish actions
performed by the system under development (SuD) and
actions performed by other actors. Finally, it is neces-
sary to understand the semantics of actions in order to be
able to identify the elementary-process-based use-case
transactions. Therefore, the initial control flow graph
of a use case should be transformed to a new directed
graph G′(V, A). Such graph would have vertices (V)
that represent actions performed by actors. Each action
consists of a subject, which should represent an actor,
a predicate describing the activity, and a noun phrase
containing an object. The transformation can be done
automatically by analyzing the text of each vertex in the
base graph G(V, A) and the descriptions of events, with
the use of a processing chain performing the following
NLP analyses:

1. Sentence segmentation: In this stage a string that
represent a use-case step is divided into separate
sentences.

2. Word segmentation: This step implements a pro-
cess of dividing a string that represent a use-case
step into words.

3. Part-of-speech tagging: In this step, a part of
speech of each word in a use-case step is identified.
The process is based on the definition of a word
and its context, i.e., relationship with adjacent and
related words in a phrase or sentence.

4. Lemmatization: It is a process of determining the
lemma for a given word (lemma is a canonical
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Figure 5: Use case represented as directed graphs: a) base graph with text in vertices; b) transformed graph with identified actions (U — actions
performed by actors not representing the system under development (SuD), S — actions performed by SuD, U′ — decision points for actors other
than SuD).

form of a set of words). For example, words “cat-
egory” and “categories” would both have “cate-
gory” as the lemma. Lemmatization might help
finding the occurrences of domain objects in a text.

5. Grammatical relations: In this step grammatical
relationships between words in a sentence are re-
solved. As a result of the analysis, all subjects,
predicates, and objects in sentences of each use-
case step are identified.

6. Lookup markers: It is a set of tools that perform
a dictionary-based lookup for words that are mean-
ingful for the interaction of actors in use cases. For
example, one group of words we mark have the
meaning “to show” (ShowWord), e.g., “present”
“display”, “show” etc. In order to increase the ac-
curacy of lookup tools we match the words using
their lemma and part-of-speech.

7. Reference marker: It is a tool similar to a lookup
marker, however, it marks the occurrences of ac-
tors, use-cases, and domain objects, based on their
definitions. The tool also indicates the type of ac-
tor (external actor or system under development)
based on its definition, i.e., the meta information
or actors’s name.

8. Action marker: Actions are marked based on the
identified grammatical relationships in sentences,
i.e., subjects, predicates, and objects. In addition,
each action has to have an actor as a subject. More-
over, the type of the action is determined based
on its predicate — using the words marked dur-
ing the lookup stage (e.g., if a predicate is also a
ShowWord, the type of action is set to “presenta-
tion”). The types of actions that are considered in
the proposed methods for transaction identification
are presented in Table 4.

Once actions are identified, each vertex in the base
graph is replaced by a sequence of vertices that cor-
respond to actions identified in the text of the vertex.
An example of the base and transformed control flow
graphs are presented in Figure 5.

As a pre-processing stage, the retreating arcs are also
identified in the transformed graph [37]. Identification
of the retreating arcs makes the analysis of a use-case
structure easier, because the retreating arcs represent
transitions from the alternative flow to the main flow,
and prevent from entering infinite loops while travers-
ing the structure of a graph.
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Table 4: The types of actions in use cases that are considered in the
proposed methods for transaction identification.

Actor Name Description

U Choice of option User chooses one of the available
options.

U Provision User provides data to the system.
U Confirmation User confirms the previous action.
U Modification User modifies the data in the sys-

tem.
S Presentation System presents some information

to the user.
S Transfer System transfers data to some other

system.
S Store System stores data.
S Question System asks a user for additional in-

formation or for confirmation.
S Data validation System validates the provided data.
S Removal System removes data.

6.3. Identification of stimuli-verbs transactions

Robiolo and Orosco [5] suggested that in order “to
clarify the actor and stimulus identification, a syntac-
tic analysis of the text could be performed. The ac-
tor will be the subject of the sentence and, the stimu-
lus triggered by the actor will be the verb.” Therefore,
each stimulus has to be expressed by a single action that
is performed by the external actor. We will denote ac-
tions performed by external actors by U. Unfortunately,
Robiolo and Orosco did not provide detailed rules that
would enable us to automatically differentiate between
stimuli actions and other U actions (they discussed the
idea of stimuli-verbs on the example). Therefore, we
will base the method for transaction identification on
the assumption that the number of stimuli is equal to the
number of independent sequences of U actions. This as-
sumption defines the lower boundary of the real number
of transactions in a use case, because after each inde-
pendent sequence of U actions there has to be a system
response. Therefore, the sequence of U actions has to
contain at least one stimulus. However, if some sys-
tem responses within the sequence of U actions were
omitted, there would be some additional (hidden) stim-
uli. We will provide some guidelines on how to mitigate
this problem at the end of this section.

In addition to the already defined U action, let U ′ de-
note the event that contains at least one action which is
performed by an external actor (we can call it a decision
point), and let S denote a single action performed by
a system under development.

The procedure of identifying sequences of consecu-
tive U actions could be performed in two steps. The

first step is to find all vertices that correspond to U ac-
tions and all arcs that are labeled with the U ′-kind of
events. It can be done by traversing the graph using
the depth-first search algorithm (DFS). The next stage
is to find sequences of adjacent U (and/or U ′) actions.
For each vertex representing a U action visit all its suc-
ceeding vertices. If the succeeding action is also of the
type U, then, if it has not been visited before, add it to
the current sequence of U actions; if it has already been
visited, append the current sequence to the sequence to
which the succeeding action belongs to. An example
of the outcome of the method is presented in Figure 6.
As a result of the analysis performed for the use case
presented in Figure 5, four independent sequences of
U actions were identified, which implies presence of at
least four transactions in that use case.
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Figure 6: The results of automatic transaction identification based on
stimuli-verbs approach for the use-case presented in Figure 5.

The accuracy of the method can be further improved
by performing a post-hoc analysis of each sequence of
U actions, to find the pairs of actions that should be di-
vided by a missing S action. For instance, if two con-
secutive actions Ui and U j have the same type “confir-
mation,” we could assume that there should be an ad-
ditional system response between them. Similarly, if
there are two consecutive actions Ui and U j; and Ui has
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an alternative flow attached to it which contains at least
one S -kind of action, we could also assume that there is
a missing S action between these two actions.

6.4. Identification of round-trip transactions

The core part of each “round trip” transaction is a pair
of actions — a user request and the system response.
Therefore, in order to identify the number of transac-
tions in a use case we would have to calculate the num-
ber of consecutive sequences of U and S actions.

However, the main problem relates to the interpreta-
tion of the alternative flows of a use case. For instance,
the question is how to interpret the situation where there
are two possible responses for a single request, e.g.,
a single operation can finish with a success or a failure.

Therefore, we decided to consider two alternative
variants of interpreting the alternative flows of a single
use case:

• A1: if a forking event contains actions that are per-
formed by external actors (U ′), it implies a pres-
ence of a new transaction in the alternative flow,
because it represents a decision point. If the fork-
ing event does not contain any actions performed
by the external actor, then, new transactions are
identified in the alternative flow in the same way
as in the main flow. Therefore, if there is a “round
trip” in the alternative flow it is identified as a sep-
arate transaction.

• A2: each alternative flow implies an addi-
tional transaction, as proposed by Collaris and
Dekker [10].

The first stage of processing is to add a new vertex for
each arc that is labeled with the U ′-type of event. The
new vertex corresponds to the action that was found in
the description of the event. The next step is to analyze
each arc in the graph (a pair of actions Ai → A j), in
order to find the ending blocks of each transaction.

The arc is considered as an ending block of a transac-
tion, if it connects any of the following pairs of verticies
(let fin denote the ending vertex of a use-case flow con-
trol graph):

• S → U: it is a situation where the first transaction
finishes, and the next one starts;

• S → fin or U → fin: it corresponds to the end of
a use case, which also implies the end of transac-
tion;

• S → U ′ or U → U ′: external actor’s decision
point implies the beginning of a new transaction.

The difference between the approaches A1 and A2
relates to the interpretation of the retreating arcs. For the
method A2 each retreating arc is automatically treated
as the ending block of the transaction.

An exemplary outcome of the method is presented in
Figure 7. It presents transactions identified for the use
case presented in Figure 5. The number of identified
transactions is equal to 4 for the variant A1, and equal
to 5 for the variant A2.
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Figure 7: The results of automatic transaction identification based on
the “round trip” definition of use-case transaction for the use case pre-
sented in Figure 5.

The accuracy of the method could be also improved
by analyzing the consecutive U actions, as in the case
of the stimuli-verbs approach. However, such analysis
should be performed as a pre-processing phase of the
method. If the conclusion is made that there is a missing
action between two consecutive U-type actions, an arti-
ficial S -vertex should be added between these actions.

6.5. Identification of semantic transactions

Identification of elementary-process-based use-case
transactions (M3 and M4) is a more demanding task, be-
cause it has to consider not only the structure of a con-
trol flow graph, but also the semantics of its actions.
Therefore, the proposed method will be based on the
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idea of semantic transaction types, which was presented
in Section 4.1.

The first stage of the method is to identify the “round
trip” transactions (A1). This kind of transactions repre-
sents the smallest unit of interaction between the exter-
nal actor and the system under development. However,
a single transaction does not have to lead to obtaining
a meaningful goal, and does not have to leave the busi-
ness of application in a consistent state.

The next step of the method is to identify the semantic
type of each “round trip” transaction. This is performed
by analyzing the types of actions constituting the trans-
action, and by matching the lookup words, according to
the decision tree presented in Figure 8.

The conditions in the decision three are tested in the
top-down order. There are three possible results of each
step of the matching process:

• R1: a rule is activated that implies a single type of
a transaction. In such case, the type is assigned to
the transaction and the matching process finishes.

• R2: a rule is activated that implies possibility of
more than one transaction types. In such case, all
the suspected transaction types are assigned to the
transaction, and matching procedure continues.

• R3: none of the rules were activated. The type of
transaction is set to “none.”

The next step of the method, is the consolidation of
the “round trip" transactions. The process starts by
sorting the transactions based on the reversed order of
traversing the control flow graph, with the use of the
DFS algorithm. Then, for each transaction a set of suc-
ceeding transactions is found4. The consecutive trans-
actions Ti and T j are consolidated, if at least one of the
following conditions is true:

• either Ti or T j is empty;

• there is an arc Ak → Al that connects transactions
Ti and T j; and Ak is a “question” action and Al is
a “provision” action;

• there is an arc Ak → Al connecting transactions
Ti and T j; and both Ak and Al are “confirmation”
actions;

• the type of Ti is “Retrieve”; the type of T j is
“Update” or “Change State”; and there is an arc

4The transaction T j succeeds the transaction Ti, if there is an arc
Ak → Al, where Ak belongs to Ti and Al belongs to T j.

Ak → Al connecting the transactions, for which Ak

is a “presentation” action and Al is a ”provision”
action and both actions process the same domain
object or screen.
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Figure 8: A decision tree that is used to determine the semantic type
of a transaction.

An example of the outcome of the method is pre-
sented in Figure 9. As the result of processing, three
transactions were identified for the use case presented
in Figure 5.

7. Validation of the proposed methods

The proposed methods for automatic transaction
identification were implemented as an extension of the
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Figure 9: The results of automatic transaction identification based on
semantic transaction types for the use case presented in Figure 5.

UCWorkbench tool [12]. We implemented the NLP pro-
cessing chain for the English language (see Section 6.2),
with the use of the Stanford NLP tools [38] (text seg-
mentation, part-of-speech tagger, grammatical relation-
ships, and lemmatizer).

Although, the methods provide objective results, the
question arises whether these results “meet the common
sense.” Otherwise, there could be a problem with inter-
pretation of the results.

Therefore, we decided to validate the proposed meth-
ods by comparing their results with the results of
human-performed transaction identification. Unfortu-
nately, the number of identified transaction can differ
substantially between different people. Therefore, we
decided to use the mean number of transactions iden-
tified by the participants of the experiment as a refer-
ence point for the comparison, and perform the analy-
sis of the same benchmark specification containing 34
use cases. In addition, we performed two indepen-
dent counts using methods M1, M2, and M4, which
were performed by two co-authors of the paper to ver-
ify whether the mean numbers of transactions are really
meaningful. The quantitative results of the comparison
are presented in Table 5. The method M3 was excluded

from the comparison, because the tool does not directly
support it. The number of such transactions is identi-
fied using semantic transaction types (M4), as it is not
possible to identify the elementary-process-based trans-
actions without understanding the semantics of the in-
teraction within a use case.

It seemed that the on-average numbers of transactions
identified by the participants in the experiment are good
reference points. The maximum relative error between
the counts of experts and the mean numbers of identified
transactions by the participants was 12%.

For the stimuli-verbs approach, the implemented
methods identified 4% more transactions than the mean
number of transactions identified by the participants of
the experiment. One of the reason for the difference was
that one of the actions was performed outside the system
“Candidate performs money transfer (outside the sys-
tem).” The tool was also more accurate than people in
finding decision points of the external actors, what lead
to increase in the number of identified transactions.

The same number of transactions was identified by
the proposed method when using the “round trip” ap-
proach. However, the exact number of transactions
identified for certain use cases differed in two cases (the
difference was equal to +/-1 transaction). Moreover, the
total number of identified transactions was similar to the
mean number of transactions identified by the partici-
pants of the experiment — the relative error was 3%.

The methods for automatic identification of semantic
transactions types, which corresponds to using methods
M3 and M4 in the experiment, provided 7% lesser num-
ber of transactions than the mean value of the number
of transactions identified by the participants. We ob-
served that the automatic method was fragile to multiple
changes of states that were realized as multiple, paral-
lel decision points. For instance, in the main flow actor
changes the state of the application to “accepted”; and
in the alternative flow — preceded by decision point —
actor “rejects” the application.

8. Conclusions

The main goal of the paper was to investigate the po-
tential threats to reliability of human-performed trans-
action identification in use cases, and — if required —
to propose the means to improve the objectiveness of
the transaction identification process.

The first observation made was that the notion of use-
case transactions is vague, as there are at least two dif-
ferent definitions of this concept. The first one comes
from Ivar Jacobson — the inventor of use cases. It states
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Table 5: Comparison of the number of transactions and UUCW obtained by participants of the experiment, two co-authors of the paper (Expert #1
and Expert #2), and the UCWorkbench tool with the NLP processing chain.

M1 M2 M4 (M3)

#Transactions UUCW #Transactions UUCW #Transactions UUCW

Participants-mean 73 186 74 194 58 (53) 178 (175)

Expert #1 73 180 73 175 56 175
Expert #2 69 175 65 170 53 170

UCWorkbench 76 190 76 190 54 170

that use-case transaction consists of the actor’s request
and a system response. The second one, introduced by
Sergey Diev, is based on the elementary process known
from Function Point Analysis. Moreover, there are also
two additional methods for transactions identification,
such as the stimuli-verb approach [5] or semantic trans-
action types [6].

In this context, the important question is whether
there is a cause-effect relationship between the choice
of the approach to transaction identification and on-
average number of use-case transactions identified by
people. In order to investigate this issue we conducted
a controlled experiment on the group of 120 students.

The analysis of the experiment data revealed that
there can be a significant difference in the median
number of transactions identified by people using the
“round trip,” and elementary-process-based definitions
of a use-case transaction. The second observation was
made, that the stimuli-verb approach for transaction
identification provides similar on-average results as the
“round trip” definition. No significant difference in the
median number of transactions was observed between
Diev’s definition of use-case transaction and the se-
mantic transactions types. Therefore, it seems that the
stimuli-verb approach is compliant with the “round trip”
definition of use-case transaction, and semantic transac-
tion types are compliant with the elementary-process-
based definition.

Another threat to reliability of transaction identifica-
tion in use cases, and use-case-based FSM, was the high
intra-method variability. The observed ratios between
the maximum and minimum number of identified trans-
actions by participants using the same method, ranged
from 1.96 to 3.83. However, one should keep in mind
that the participants were students who were familiar
with the concept of use cases, but they had no previous
experience in identifying use-case transactions.

In order to mitigate the revealed problems related
to different approaches to transaction identification and

intra-method variability, we proposed a set of methods
that can be used to automatically identify transactions
in use cases according to each definition of use-case
transaction. The proposed methods were implemented
as a proof-of-concept tool. The transaction counts pro-
vided by the tool were compared with the manual counts
done by people — participants in the experiment and
FSM experts. The difference in the number of transac-
tions identified by the tool and on-average number of
transactions identified by the participants were similar
(3–7% depending on the method). In addition, it pro-
vides repeatable results, therefore, it mitigates reliabil-
ity problems that relate to the human factor.
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