

CHAPTER 1

Recent Polish achievements in Software Engineering
	

By	
 Jakub Jurkiewicz, Piotr Kosiuczenko, Lech Madeyski, Mirosław Ochodek,
Cezary Orłowski, Łukasz Radliński

	

	

	

	

How to cite:

Jakub	
 Jurkiewicz,	
 Piotr	
 Kosiuczenko,	
 Lech	
 Madeyski,	
 Mirosław	
 Ochodek,	
 Cezary	
 Orłowski,	
 Łukasz	

Radliński.	
 “Recent	
 Polish	
 achievements	
 in	
 Software	
 Engineering.”	
 In	
 Software	
 Engineering	
 from	

Research	
 and	
 Practice	
 Perspective	
 (Eds.	
 Lech	
 Madeyski,	
 M.	
 Ochodek),	
 pp.	
 15-­‐38,	
 Scientific	
 Papers	
 of	

the	
 Polish	
 Information	
 Processing	
 Society	
 Scientific	
 Council,	
 ISBN	
 978-­‐83-­‐63919-­‐16-­‐0,	
 2014.	

Software Engineering

from Research and Practice

 Perspectives

S
o

f
t
w

a
r
e

E

n
g

i
n

e
e
r
i
n

g

f
r
o

m

R

e
s
e
a
r
c
h

a
n

d

P

r
a
c
t
i
c
e

P

e
r
s
p

e
c
t
i
v
e
s

Scientific EditorsLech Madeyski, Miros≥aw Ochodek
9 788363 919160

ISBN 978-83-63919-16-0

Table of Contents

Preface 9

 Dirk Riehle, Miklós Biró 11

1. Recent Polish achievements in Software Engineering 15

Part I – Project Management 39

2. Working with Agile in a Distributed Environment 41

3. Management of IT project experiences on the basis of SOEKS 55

Part II – Requirements Engineering 71

4. Functional Safety, Traceability, and Open Services 73

5. The Sufficient Criteria for Consistent Modeling From the Con-
text Diagram to the Business Use Case Diagrams Driven By
Consistency Rules

83

6. How software development factors influence user satisfaction in
meeting business objectives and requirements?

101

Part III – Software Architecture and Design 121

7. Comparison of selected ESBs on the base of ISO standards 123

8. Architectural Patterns Applied in Internet of Things 133

9. DCI implementation in C++ and JAVA – case study 153

Part IV – Software Quality 165

10 E2A – An Extensible Evolution Analyzer for Software Reposito-
ries

167

11 Can the source code be reviewed on a smartphone? 179

Authors and affiliations 197

Authors and affiliations

Preface
Lech Madeyski
Wroclaw University of Technology, Faculty of Computer Science and Manage-
ment, Institute of Informatics
lech.madeyski@pwr.edu.pl
Mirosław Ochodek
Poznan University of Technology, Faculty of Computing
miroslaw.ochodek@cs.put.poznan.pl

CHAPTER 1
Jakub Jurkiewicz
Poznan University of Technology, Faculty of Computing
jakub.jurkiewicz@cs.put.poznan.pl
Piotr Kosiuczenko
Military University of Technology in Warsaw, Department of Cybernetics
pkosoiczenko@wat.edu.pl
Lech Madeyski
Wroclaw University of Technology, Faculty of Computer Science and Manage-
ment, Institute of Informatics
lech.madeyski@pwr.edu.pl
Mirosław Ochodek
Poznan University of Technology, Faculty of Computing
miroslaw.ochodek@cs.put.poznan.pl
Cezary Orłowski
IBM Center for Advanced Studies on Campus, Gdańsk,
cor@zie.pg.gda.pl
Łukasz Radliński
West Pomeranian University of Technology,
Faculty of Computer Science and Information Technology
lukasz.radlinski@zut.edu.pl

CHAPTER 2
Marek Majchrzak
Capgemini Poland
Wroclaw University of Technology, Faculty of Computer Science and Manage-
ment, Institute of Informatics
marek.majchrzak@capgemini.com

198 Software Engineering from Research and Practice Perspectives

Łukasz Stilger
Capgemini Poland
lukasz.stilger@capgemini.com
Marek Matczak
Capgemini Poland
marek.matczak@capgemini.com

CHAPTER 3
Tomasz Sitek
Gdańsk University of Technology, Faculty of Management and Economics
tsitek@zie.pg.gda.pl
Artur Ziółkowski
Gdańsk University of Technology, Faculty of Management and Economics
aziolko@zie.pg.gda.pl

CHAPTER 4
Miklós Biró
Software Competence Center Hagenberg,
miklos.biro@scch.at

CHAPTER 5
Stanisław Jerzy Niepostyn

Warsaw University of Technology, Institute of Computer Science
S.Niepostyn@ii.pw.edu.pl
Andrzej Tyrowicz
Agencja Europejska, Andrzej Tyrowicz
a@tyrowicz.eu

CHAPTER 6
Łukasz Radliński
West Pomeranian University of Technology,
Faculty of Computer Science and Information Technology
lukasz.radlinski@zut.edu.pl

Authors and affiliations 199

CHAPTER 7
Bogumiła Hnatkowska
Wroclaw University of Technology, Faculty of Computer Science and Manage-
ment, Institute of Informatics
Bogumila.Hnatkowska@pwr.edu.pl
Łukasz Wrona
Wroclaw University of Technology, Faculty of Computer Science and Manage-
ment, Institute of Informatics

lukwro83@gmail.com

CHAPTER 8
Andrzej Ratkowski

Warsaw University of Technology,
Institute of Control and Computation Engineering
Krzysztof Gawryś

Warsaw University of Technology,
Institute of Control and Computation Engineering
Eliza Świątek
Warsaw University of Technology,
Institute of Control and Computation Engineering

CHAPTER 9
Ilona Bluemke

Warsaw University of Technology, Faculty of Electronics and Information
Technology, Institute of Computer Science
I.Bluemke@ii.pw.edu.pl

Anna Stepień
Warsaw University of Technology, Faculty of Electronics and Information
Technology, Institute of Computer Science
A.Stepien.1@stud.elka.pw.edu.pl

CHAPTER 10
Michał Ćmil
Poznan University of Technology, Faculty of Computing
cmilmichal@gmail.com
Bartosz Walter
Poznan University of Technology, Faculty of Computing
bartosz.walter@cs.put.poznan.pl

200 Software Engineering from Research and Practice Perspectives

CHAPTER 11
Wojciech Frącz
AGH University of Science and Technology
fracz@iisg.agh.edu.pl
Jacek Dajda
AGH University of Science and Technology
dajda@agh.edu.pl

Chapter 1

Recent Polish achievements in Software Engineering

Publications in top research journals (indexed by ISI) as well as citations are crucial in any research
field to position the work and to build on the work of others. The objective of this chapter is twofold:
to give an overview of the achievements of Polish research centers in the field of software engineer-
ing since 2010, and to present few recent contributions by researchers with Polish affiliations in ISI
journals in the field of software engineering or closely related fields.

1.1. Introduction

Glass was the first who two decades ago published an assessment of systems
and software engineering scholars and institutions [Gla94]. The set of journals
selected by Glass included IEEE Transactions on Software Engineering (TSE),
ACM Transactions on Software Engineering and Methodologies (TOSEM), IEEE
Software (SW), Information and Software Technology (IST), Journal of Systems
and Software (JSS), and Software: Practice and Experience (SPE). In 2009 Wong
et al. [WTGBC09] have analyzed publications in the period of 2002–2006 using
this set of journals extended by the Empirical Software Engineering (EMSE) jour-
nal to emphasize the importance of strong empirical component. The most recent
report by Wong et al. was published in 2011 [WTGBC11].

A complementary series of analyses of the most cited articles in the software
engineering journals has been published by Wohlin. The most recent of analyses
was published in 2009 on a basis of 18 software engineering journals [Woh09].

However, to the best of our knowledge, neither similar analyses but related
to Polish research institutions or researchers involved in the software engineer-
ing field, nor an overview of selected of contributions by researchers with Polish
affiliations in ISI software engineering (or closely related) journals have been pub-
lished so far. Hence, the aim of this chapter is to fill this gap.

The aim of the first section is to give an overview of the contribution of re-
searchers with Polish affiliations in comparison to other European countries. The
aim of the subsequent sections is to go into details and present short overviews of
selected contributions of Polish authors published by ISI indexed journals within
the software engineering field or computer science in general. The presented con-
tributions include identification of events in use cases, solving the invariability
problem in OCL, predicting the flow of defect correction effort to optimize the

16 Software Engineering from Research and Practice Perspectives

amount of quality assurance (QA) activities to minimize the total project effort,
and model of a maturity capsule in software project management.

1.1.1. Selection decisions

An important decision when looking at Polish contributions to the field of
software engineering is which ISI software engineering journals to include. We
decided to include in the analyzed set of journals all of the software engineering
journals analyzed by Wong et al. [WTGBC11] as well as Wohlin [Woh09], even
if they changed their names (e.g., Journal of Software: Evolution and Process
continues, since 2012, the tradition of the Journal of Software Maintenance and
Evolution: Research and Practice and Software Process: Improvements and Prac-
tice, while IET Software continues, since 2007, the tradition of IEE Proceedings -
Software). Then from the created superset of journals we excluded journals which
are discontinued (Annals of Software Engineering, Software Architecture, Soft-
ware – Concepts and Tools) or journals without impact factor in 2013. In spite
of the fact that the created our set of journals based on the inclusion decisions
of the renowned authors of previous analyses – Wong et al. [WTGBC11] and
Wohlin [Woh09] – and minor constraints related to impact factor in year 2013, the
created set of journals is by no means complete and can be extended even further.
Our arbitrary decision is to extend the set of journals by adding the Software and
Systems Modeling journal, which is strictly software engineering journal with as-
signed impact factor. There is also a wide range of computer science journals (e.g.,
Computing and Informatics, Cybernetics and Systems: An International Journal)
which could be included on a paper by paper basis as some of them may be re-
lated to software engineering. However, it would need an extreme effort to check
every published paper. As a result, the set of the analyzed journals is presented in
Table 1.1.

All of these journals are indexed by Scopus, which provides an excellent
search interface including ability to construct advanced search strings. The search
string we used to constrain our search to the papers by authors with Polish af-
filiation published since 2010 in the aforementioned set of journals is presented
below:

(ISSN(1049331X) OR ISSN(09288910) OR ISSN(13823256) OR ISSN(17518806) OR
ISSN(07407459) OR ISSN(00985589) OR ISSN(09505849) OR ISSN(02181940) OR
ISSN(1532060X) OR ISSN(09473602) OR ISSN(20477481) OR ISSN(09639314) OR
ISSN(09600833) OR ISSN(00380644) OR ISSN(01641212) OR ISSN(16191366)) AND
AFFIL(poland) AND (PUBYEAR > 2009)

Recent Polish achievements in Software Engineering 17

Table 1.1. Set of analyzed software engineering journals.

ACM Transactions on Software Engineering and Methodology (TOSEM)
Automated Software Engineering (ASE)
Empirical Software Engineering (EMSE)
IET Software (IETSW)
IEEE Software (SW)
IEEE Transactions on Software Engineering (TSE)
Information and Software Technology (IST)
International Journal of Software Engineering and Knowledge Engineering (IJSEKE)
Journal of Software: Evolution and Process (JSEP)
Journal of Software Maintenance and Evolution: Research and Practice (JSME)
Requirements Engineering Journal (REJ)
Software and Systems Modeling (SoSyM)
Software Quality Journal (SQJ)
Software Testing, Verification and Reliability (STVR)
Software: Practice and Experience (SPE)
Journal of Systems and Software (JSS)

1.1.2. Search results

The search performed on 14 September 2014 returned 28 document results
(sorted by number of citations):
1. L. Madeyski. “The impact of test-first programming on branch coverage and mutation score

indicator of unit tests: An experiment”. In: Information and Software Technology 52.2 (2010),
pp. 169–184. DOI: 10.1016/ j.infsof.2009.08.007. URL: http:// dx.doi.org/ 10.1016/ j.infsof.
2009.08.007 – 19 citations

2. M. Ochodek, J. Nawrocki, and K. Kwarciak. “Simplifying Effort Estimation Based on Use
Case Points”. In: Information and Software Technology 53.3 (Mar. 2011), pp. 200–213. ISSN:
0950-5849. DOI: 10.1016/ j.infsof.2010.10.005. URL: http://dx.doi.org/10.1016/ j.infsof.2010.
10.005 – 16 citations

3. L. Madeyski and N. Radyk. “Judy – A Mutation Testing Tool for Java”. In: IET Software Jour-
nal (formerly IEE Proceedings Software) 4.1 (2010). Draft: http:// madeyski.e- informatyka.
pl/ download/ Madeyski10b.pdf , pp. 32–42. DOI: 10.1049/ iet- sen.2008.0038. URL: http:
//dx.doi.org/10.1049/ iet-sen.2008.0038 – 16 citations

4. A. Janik and K. Zielinski. “AAOP-based Dynamically Reconfigurable Monitoring System”.
In: Information and Software Technology 52.4 (Apr. 2010), pp. 380–396. ISSN: 0950-5849.
DOI: 10.1016/ j.infsof.2009.10.006. URL: http://dx.doi.org/10.1016/ j.infsof.2009.10.006 – 15
citations

5. G. J. Nalepa and K. Kluza. “UML REPRESENTATION FOR
RULE-BASED APPLICATION MODELS WITH XTT2-BASED BUSINESS RULES”. in: In-
ternational Journal of Software Engineering and Knowledge Engineering 22.04 (2012), pp. 485–
524. DOI: 10.1142/ S021819401250012X. URL: http:// www.worldscientific.com/ doi/ abs/ 10.
1142/S021819401250012X – 10 citations

6. M. Miłkowski. “Developing an Open-source, Rule-based Proofreading Tool”. In: Software:

18 Software Engineering from Research and Practice Perspectives

Practice and Experience 40.7 (June 2010), pp. 543–566. ISSN: 0038-0644. DOI: 10.1002/spe.
v40:7. URL: http://dx.doi.org/10.1002/spe.v40:7 – 10 citations

7. A. Janik and K. Zielinski. “Adaptability Mechanisms for
Autonomic System Implementation with AAOP”. in: Software: Practice and Experience 40.3
(Mar. 2010), pp. 209–223. ISSN: 0038-0644. DOI: 10.1002/spe.v40:3. URL: http://dx.doi.org/
10.1002/spe.v40:3 – 4 citations

8. P. Bachara, K. Blachnicki, and K. Zielinski. “Framework for Application Management with
Dynamic Aspects J-EARS Case Study”. In: Information and Software Technology 52.1 (Jan.
2010), pp. 67–78. ISSN: 0950-5849. DOI: 10 . 1016 / j . infsof . 2009 . 06 . 003. URL: http :
//dx.doi.org/10.1016/ j.infsof.2009.06.003 – 4 citations

9. J. Floch et al. “A Comprehensive Engineering Framework for Guaranteeing Component Com-
patibility”. In: Journal of Systems and Software 83.10 (Oct. 2010), pp. 1759–1779. ISSN:
0164-1212. DOI: 10.1016/ j.jss.2010.04.075. URL: http:// dx.doi.org/ 10.1016/ j.jss.2010.04.
075 – 3 citations

10. S. Deorowicz. “Solving Longest Common Subsequence and Related Problems on Graphical
Processing Units”. In: Software: Practice and Experience 40.8 (2010), pp. 673–700. ISSN:
0038-0644. DOI: 10.1002/spe.v40:8. URL: http://dx.doi.org/10.1002/spe.v40:8 – 3 citations

11. A. Zalewski and S. Kijas. “Beyond ATAM: Early Architecture Evaluation Method for
Large-scale Distributed Systems”. In: Journal of Systems and Software 86.3 (Mar. 2013),
pp. 683–697. ISSN: 0164-1212. DOI: 10.1016/ j.jss.2012.10.923. URL: http:// dx.doi.org/ 10.
1016/ j.jss.2012.10.923 – 2 citations

12. K. Łukasiewicz and J. Miler. “Improving agility and discipline of software development with
the Scrum and CMMI”. in: Software, IET 6.5 (2012), pp. 416–422. ISSN: 1751-8806. DOI:
10.1049/ iet-sen.2011.0193 – 2 citations

13. M. Janicki, M. Katara, and T. Pääkkönen. “Obstacles and Opportunities in Deploying
Model-based GUI Testing of Mobile Software: A Survey”. In: Software Testing, Verification
and Reliability 22.5 (Aug. 2012), pp. 313–341. ISSN: 0960-0833. DOI: 10.1002/ stvr.460.
URL: http://dx.doi.org/10.1002/stvr.460 – 2 citations

14. M. Ochodek, B. Alchimowicz, J. Jurkiewicz, and J. Nawrocki. “Improving the Reliability
of Transaction Identification in Use Cases”. In: Information and Software Technology 53.8
(2011), pp. 885–897. ISSN: 0950-5849. DOI: 10.1016/ j . infsof .2011.02 .004. URL: http:
//dx.doi.org/10.1016/ j.infsof.2011.02.004 – 2 citations

15. R. Hofman. “Behavioral Economics in Software Quality Engineering”. In: Empirical Software
Engineering 16.2 (Apr. 2011), pp. 278–293. ISSN: 1382-3256. DOI: 10.1007/ s10664- 010-
9140-x. URL: http://dx.doi.org/10.1007/s10664-010-9140-x – 2 citations

16. J. Jurkiewicz, J. Nawrocki, M. Ochodek, and T. Głowacki. “HAZOP based identification of
events in use cases”. English. In: Empirical Software Engineering (2013), pp. 1–28. ISSN:
1382-3256. DOI: 10.1007/s10664-013-9277-5. URL: http://dx.doi.org/10.1007/ s10664-013-
9277-5 – 1 citation

17. A. Riel, A. Draghici, G. Draghici, D. Grajewski, and R. Messnarz. “Process and product inno-
vation needs integrated engineering collaboration skills”. In: Journal of Software: Evolution
and Process 24.5 (2012), pp. 551–560. ISSN: 2047-7481. DOI: 10 . 1002 / smr. 497. URL:
http://dx.doi.org/10.1002/smr.497 – 1 citation

18. P. Janczarek and J. Sosnowski. “Investigating software testing and maintenance reports: Case
study”. In: Information and Software Technology 0 (2014), pp. –. ISSN: 0950-5849. DOI:

Recent Polish achievements in Software Engineering 19

http:// dx.doi.org/10.1016/ j.infsof.2014.06.015. URL: http://www.sciencedirect.com/ science/
article/pii/S0950584914001542 – 0 citations

19. L. Madeyski and M. Jureczko. “Which Process Metrics Can Significantly Improve Defect
Prediction Models? An Empirical Study”. In: Software Quality Journal (accepted) (2014).
DOI: 10.1007/ s11219-014-9241-7. URL: http:// dx.doi.org/ 10.1007/ s11219-014-9241-7 – 0
citations

20. L. Madeyski, W. Orzeszyna, R. Torkar, and M. Józala. “Overcoming the Equivalent Mutant
Problem: A Systematic Literature Review and a Comparative Experiment of Second Order
Mutation”. In: IEEE Transactions on Software Engineering 40.1 (2014), pp. 23–42. ISSN:
0098-5589. DOI: 10.1109/ TSE.2013.44. URL: http:// dx.doi.org/ 10.1109/ TSE.2013.44 – 0
citations

21. J. Sobecki. “Comparison of Selected Swarm Intelligence Algorithms in Student Courses Rec-
ommendation Application”. In: International Journal of Software Engineering and Knowledge
Engineering 24.01 (2014), pp. 91–109 – 0 citations

22. B. Czarnacka-Chrobot. “RATIONALIZATION OF BUSINESS
SOFTWARE SYSTEMS DEVELOPMENT AND ENHANCEMENT PROJECTS INVEST-
MENT DECISIONS ON THE BASIS OF FUNCTIONAL SIZE MEASUREMENT”. in: Inter-
national Journal of Software Engineering and Knowledge Engineering 23.06 (2013), pp. 839–
868. URL: http : / / www. worldscientific . com / doi / abs / 10 . 1142 / S0218194013500228 – 0
citations

23. T. Schulz, Ł. Radliński, T. Gorges, and W. Rosenstiel. “Predicting the Flow of Defect Correc-
tion Effort using a Bayesian Network Model”. English. In: Empirical Software Engineering
18.3 (2013), pp. 435–477. ISSN: 1382-3256. DOI: 10 . 1007 / s10664 - 011 - 9175 - 7. URL:
http://dx.doi.org/10.1007/s10664-011-9175-7 – 0 citations

24. P. Kosiuczenko. “Specification of Invariability in OCL”. in: Software and Systems Modeling
12.2 (May 2013), pp. 415–434. ISSN: 1619-1366. DOI: 10.1007/ s10270-011-0215-y. URL:
http://dx.doi.org/10.1007/s10270-011-0215-y – 0 citations

25. W. Pedrycz. “KNOWLEDGE MANAGEMENT AND SEMANTIC MODELING: A ROLE
OF INFORMATION GRANULARITY”. in: International Journal of Software Engineering
and Knowledge Engineering 23.01 (2013), pp. 5–11. URL: http:// www.worldscientific.com/
doi/abs/10.1142/S0218194013400019 – 0 citations

26. J. J. Jung, R. P. Katarzyniak, and N. T. Nguyen. “GUEST EDITORS; INTRODUCTION”.
in: International Journal of Software Engineering and Knowledge Engineering 23.01 (2013),
pp. 1–3. DOI: 10.1142/S0218194013020014 – 0 citations

27. R. P. Katarzyniak and G. Popek. “INTEGRATION OF MODAL AND FUZZY METH-
ODS OF KNOWLEDGE REPRESENTATION IN ARTIFICIAL AGENTS”. in: International
Journal of Software Engineering and Knowledge Engineering 23.01 (2013), pp. 13–29. DOI:
10.1142/ S0218194013400020. URL: http: / / www.worldscientific .com/ doi / abs / 10 .1142/
S0218194013400020 – 0 citations

28. M. Psiuk, D. Żmuda, and K. Zielinski. “Distributed OSGi Built over Message-oriented Mid-
dleware”. In: Software: Practice and Experience 43.1 (Jan. 2013), pp. 1–31. ISSN: 0038-0644.
DOI: 10.1002/spe.1148. URL: http://dx.doi.org/10.1002/spe.1148 – 0 citations

20 Software Engineering from Research and Practice Perspectives

We repeated the search process for different countries (changing the part of
the search string responsible for affiliation, e.g. from AFFIL(poland) into
AFFIL(germany)) as well as the world (removing the part of the search string
responsible for affiliation). Figure 1.1 presents a map of Europe including bubbles
with bubble size proportional to the contribution of each country.

0.6%8.5%

4.5%

4.3%
2.8%

2.4%

9.1%

7.4%

10.2%

0.2%

0.2%

2.3%

1.6%

0%

0.1%

1.2%

0.2%

2.6%

0.5%

1.8%

0.2%
0%

1%

4%

0.8%

0.2%

0.1%

0%

0.5%1.8%

1.5%

0%

Figure 1.1. How European countries contribute to leading software engineering journals.

United Kingdom, Spain and Germany contribute the most in terms of the
number of papers published in the analyzed set of leading software engineering
journals and time frame, i.e. 10.2%, 9.1% and 8.5% respectively. It is worth
mentioning that contribution of United States is about 21%.

Recent Polish achievements in Software Engineering 21

Polish contribution (0.6%) is slightly less than the contribution of Portugal
(0.8%), which cannot be considered an achievement taking into account that Poland
is bigger than Portugal. Polish contribution is spread among 13 research institu-
tions (e.g., Wroclaw University of Technology, AGH University of Technology,
Poznan University of Technology, Warsaw University of Technology) and one
software development company (Nokia Siemens Networks).

It would be interesting to check whether there are any interesting trends with
regard to the contribution of Polish researchers in last years. A subsequent analysis
presented in Figure 1.2 shows how selected European countries contributed to the
analyzed set of journals in successive years. We cannot see any specific trend with
regard to Polish contribution in the last five years.

0

3

6

9

2010 2011 2012 2013 2014
Year

P
er

ce
nt

ag
e

co
nt

rib
ut

io
n

of
 a

 c
ou

nt
ry

Country

Austria

Finland

Germany

Poland

Spain

Sweden

United Kingdom|UK

Figure 1.2. Percentage contribution of European countries to leading
software engineering journals.

1.2. Identification of events in use cases

1.2.1. Research context
There are many quality attributes of requirements specifications, one of them

is completeness. If one considers use cases for description of functional require-
ments, it is important to include complete list of events which may interrupt

22 Software Engineering from Research and Practice Perspectives

main scenarios. Missing events can lead to higher project costs and overrunning
schedule. Therefore, a question arises: what is the effective and efficient method
to identify events in use cases? No specific method, aimed at identification of
events in use cases, had been found, hence, as the first step, method based on
HAZOP approach has been proposed and evaluated in comparison to the ad hoc
approach [JNOG13b]. As the second step, automatic method of events identifica-
tion has been proposed and evaluated.

1.2.2. Research objectives

The goal of this study was to propose methods aimed at identification of events
in use cases. Moreover, these methods have been evaluated from the stand point
of accuracy and speed.

1.2.3. Research methods

HAZOP method has been used as a fundament for the proposed H4U method,
which is aimed at identification of events in use cases. H4U uses the notion of
primary and secondary keywords in the process of analysis of use cases. In order
to evaluate the proposed approach, two controlled experiments have been designed
and conducted. In both experiments the H4U method has been compared to the
ad hoc approach. Participants of the first experiment included 18 students and in
the second experiment 64 IT professionals were involved. In both experiments,
the accuracy and speed of the two approaches have been measured and evaluated.
Moreover, an automatic method of events identification has been proposed. In or-
der to elaborate this method, 160 use cases from software projects have been ana-
lyzed. This analysis let to naming 14 abstract event types and two inference rules.
The automatic method has been evaluated from the point of view of speed and
accuracy. Moreover, linguistic quality of the automatically identified events has
been assessed in an experiment based on the assumptions of Turing-test. Bench-
mark use-case-based requirements specification was used in the evaluations of ad
hoc approach, H4U method and automatic method.

1.2.4. Research results

In the first place, H4U method has been evaluated with comparison to the
ad hoc approach. The first experiment (with students) showed that H4U method
allows to achieve more accurate results. However, the participants who used
the H4U method were slower in the analysis of use cases than the participants
who used ad hoc approach. The second experiment (with IT professionals) con-

Recent Polish achievements in Software Engineering 23

firmed these results. The results from both experiments showed that the accu-
racy of events identification ranged from 0.15 to 0.26. Experiment concerning
the proposed automatic method of events identification showed that this method
can achieve accuracy at the level of 0.8, which is better than manual approaches.
Moreover, automatic method is faster than manual methods, i.e., it is able to an-
alyze 10.8 steps per minute, while participant of the experiments were able to
analyze on average 2.5 steps per minute with ad hoc approach and 0.5 steps per
minute with H4U method. In terms of linguistic quality of the automatically iden-
tified events, it can be concluded that the understandability of event descriptions
generated by computer was not worse than understandability of event descriptions
written by humans.

1.2.5. Conclusions
The proposed H4U method, aimed at identification of use-case events, pro-

vides effective alternative to the ad hoc approach in terms of accuracy of event
identification. The accuracy and speed of identification of events can be further
improved by using the proposed automatic method.

1.3. Solving the invariability problem in OCL

1.3.1. Research context
There exist various methods and languages for the specification and model-

ing of object-oriented systems. Contracts are the prevailing way of specifying
systems from the caller point of view (see [Mey88]). The Unified Modeling Lan-
guage (UML) [OMG11] is often used in combination with the Object Constraint
Language (OCL) [OMG12], a high-level language for a contractual specification
of object-oriented systems. In OCL, one can express invariants and operations’
pre- and post-conditions.

The specification of invariable system parts is a well known problem. Usually
when a change of a large system happens, only its small part is modified and the
rest remains unchanged. In case of complex systems one needs a means for avoid-
ing extensive specification of those invariable parts. This is the so called frame
problem. In case of object-oriented systems, one has to specify what happens
with all objects’ attributes and associations. However, without a proper means the
resulting specification can be, and often is, very excessive. For a number of years
this problem remained unsolved for OCL.

24 Software Engineering from Research and Practice Perspectives

The frame problem

In general there exist four approaches to the frame problem: minimal-change
approach, implicit specification and frame formulas. The minimal-change ap-
proach requires that the set of changed system parts is minimal, i.e., the change is
in accordance with the specification in the usual sense and moreover the number
of changed parts cannot be smaller. A serious disadvantage of this approach is
that it is very hard to figure out such minimal sets, and the minimality proof can
be complex and non-standard. Thus it is not useful in practice, and specially when
tool support is needed

An implicit approach to invariability was used in case of OCL, however it
dates back to Hoare logic. In this logic all variables which are not mentioned in
the so called Hoare triple are assumed to be unchanged. The idea of the approach
is similar: all system parts not mentioned in a specification must not change. This
approach allows to write simple specifications and does not require any special
means. However, it does not work well for contractual specifications because an
operation execution can have very complex side-effects. This approach also heav-
ily depends on the actual form of the specification and for specifications equivalent
in the classical logical sense it may result in different variable parts.

The frame formulas are used in artificial intelligence (cf. [Sch90]). The idea
is to specify modification of attributes using axiom schemata. This approach
requires however proper means to make the specifications compact. In case of
Java Modeling Language (JML, see [DM05]) and also Spec#, explicit invariability
clauses are used for a compact specification of invariable properties. Invariability
constraints can be checked at the compile-time. Thus, it is not possible to specify
invariability requirements which cannot be checked statically. Moreover, these
languages are much simpler than OCL.

1.3.2. Research objectives

The goal of research [Kos13c; Kos13a] was to provide specification primitives
which address the shortcomings of previously existing approaches. In particular,
these primitives should:

— allow one to specify the invariable part of object-oriented systems
— be language-based, not semantics-based, preferably OCL-based
— allow validity monitoring with standard OCL-tools
— ensure logical equivalence of OCL-specifications in the standard sense
— allow for the application of standard proof techniques

Recent Polish achievements in Software Engineering 25

1.3.3. Research results

A state of an object-oriented system can be understood as a graph with labeled
nodes and labeled edges. The nodes correspond to objects, their labels to their
classes. The edges correspond to links between objects; the corresponding labels
to class attributes and associations among them. A state change of an oo-system
corresponds to a state change of such a labeled graph. Such a change concerns
object creation and deletion, and also link modification. We let the object creation
and deletion be governed by the OCL-specification. However we add new primi-
tives to identify sets of those links which can be removed or replaced by new ones.
Thus, a system change, object removal and creation as well as link modification
can happen as long as the basic OCL-specification is satisfied and the links are
modified only when they are specified by the primitives.

An OCL-specification of an operation has basically three parts. The first part
of the specification declares the context, i.e., the signature of specified method
and the class it belongs to. The second part specifies its pre-condition, i.e., the
condition which has to be satisfied before the operation is executed. The third part
is the post-condition, i.e., a condition which must be valid after the operation’s
execution. We add to operations’ post-conditions invariability clauses of the form:

in p modifies t1::a1, ..., tn::an
Clause p defines a set of classes; in general it can be a metamodel-based view
definition [Kos13c]. Term ti is an OCL-term defining a set of objects of a class
Ci and ai is an attribute or an association-end of this class. For objects defined
by term ti attribute/association ai can be changed. Attribute ai has to belong
to classes defined by p. We do not specify in this clause, what happens with
attributes not included in p.

As an example, consider a bank account with attribute balance storing in-
formation on the actual balance of a bank account and method credit. The way
this method operates can be specified in the extended OCL in the following way:

context BankAccount::credit(amount : Real)
post : self.balance = self.balance@pre + amount
in BankAccount modifes : self::balance

The primitive @pre can occur only in post-conditions. It delivers the value of
attribute balance in the pre-state, i.e., in the state before the method execution.
When it does not occur as a postfix of an attribute, then the value of attribute is
computed in the post-state. Operation credit increases attribute balance by
adding amount. The invariability clause says that credit modifies only the
attribute balance of objects from class BankAccount.

26 Software Engineering from Research and Practice Perspectives

1.3.4. Conclusions

Specification of invariability was a real problem in case of OCL-specifications.
The problem with designing invariability primitives was the descriptive power of
OCL and the plenitude of constructs facilitating specification writing. As a result
of the presented research, a solution of this problem was proposed, which is simple
in form and has natural semantics. It allows one for compact specifications of
invariable system parts in a compact and precise way. The semantics is defined in
terms of standard OCL; this allows for the application of standard OCL-models,
techniques and tools. However, there are still issues to be addressed. For example,
we need to define primitives for associations with multiple ends.

1.4. Predicting the Flow of Defect Correction Effort

1.4.1. Research context

Extensive literature on defect prediction usually deals with predicting number
of defects or defect proneness of a software component. While such information
is useful in many contexts it does not answer the question that is more important
from the resource management perspective, i.e., how much effort will be required
to correct these defects? The described study investigated possibility of predicting
correction effort instead of raw defect count. [SRGR13b]

The environment for this study was the automotive company where software
is developed according to the industrial standard V-model [Ind92] with four suc-
cessive phases: requirements (RE), design (DE), implementation (IM), integration
and testing (I&T). An earlier study [SRGR11] had confirmed that defect correc-
tion effort (DCE) depends on the phases where a defect was inserted and detected.
Specifically, defects inserted in early phase, but detected in later, need more effort
for their correction than if they are inserted and detected in the same phase. This
flow of defect correction effort between phases makes the main rationale for the
proposed predictive model.

1.4.2. Research objectives

The main goal of this study was to develop a model that could predict the de-
fect correction effort at various development phases. This model, called a Defect
Cost Flow Model (DCFM) reflects a V-model of a software development lifecycle
– a real engineering process for developing embedded applications in the automo-
tive industry. With this model it was possible to optimize the amount of quality
assurance (QA) activities in different phases to minimize the total project effort.

Recent Polish achievements in Software Engineering 27

1.4.3. Research methods

Technically, the DCFM is a Bayesian Network (BN). Among various reasons
for choosing a Bayesian Network as a formal representation of DCFM the most
important were:
— Model structure reflects cause-effect relationships for better understanding and

fit to reality.
— BNs may incorporate expert knowledge combined with empirical data.
— They enable performing various types of analyses using rigorous probability

calculus focused on decision support.
The research process involved the following main phases:
1. Problem definition using the Goal-Question-Metric approach.
2. Data gathering and analysis – using the internal change and defect manage-

ment system as main source. The second data source was expert knowledge
from researchers, developers and managers supporting this study. Exiting lit-
erature in the field served as the third data source.

3. Model creation and enhancement covered building initial version of the model
as well as its multiple enhancements. Each version contained new elements
(i.e. variables) and the whole model was calibrated using the data obtained in
the previous phase. The model was created in an iterative process for easier
validation and access to the working (partial) version at each time.

4. Model validation covered general model behavior, practical usefulness, de-
tailed model behavior in numerous scenarios with different input data, sensi-
tivity analysis, and in the possibility of adjusting and calibrating the core of
DCFM.

1.4.4. Research results

The main result was the Defect Cost Flow model. Its structure is too large
for display and discuss in a single figure. Thus, Figure 1.3 illustrates the core
structure of the model while Figure 1.4 presents some details for the design phase.
The defect correction effort flows from the phase where defects are inserted until
they are detected and fixed.

Specifically, some defects inserted in the requirements phase are also fixed
there. But since the review process is imperfect some defects are left and thus
flow to the next phase (design). Correcting these defects in this phase requires
more effort (4-5 times) as reflected by the effort multiplier (Figure 1.4 left). With
higher level of QA activity more defects could be detected in the design phase. But
still, some would be left and detected in later phases.

28 Software Engineering from Research and Practice Perspectives

Figure 1.3. Schematic of DCFM [SRGR13b].

In the design phase also new defects are inserted. They would need to be
detected and fixed – partially in the QA activity, and partially in the next phases
as the defect correction effort (Figure 1.4 right).

The model incorporates various empirical data, e.g.:
— The probabilities for inserting defects slowly decreases in the first three phases

and drops down rapidly in the I&T phase.
— Different levels for sufficiency of QA effort are defined as a percentage of the

core development effort.
— The QA activities are the most efficient in the RE and DE phases. In IM and

I&T phases they are significantly less efficient in detecting defects originating
from earlier phases.

1.4.5. Conclusions

Model validation confirms that the model provides sensible predictions con-
sistent with gathered empirical data and known literature in software engineering
field. What is especially important is that this model has been applied in a real in-

Recent Polish achievements in Software Engineering 29

Phase DE (RE) Phase DE

Phase

Multiplier

(RE) RE to

DE

DCE (RE) in

DE

DCE after

Rev iew (RE)

in DE

Defect

Detection

Potential

(RE) in DE

DCE

Reduced

(RE) in DE

Lev el of QA

activ ity (RE)

in DE

Lev el of QA

activ ity

Dev elopment

Effort

QA Effort

DCF

DCEDCE after QA

Defect

Detection

Potential

DCE

Reduced

DCE (RE)

shifted from

Phase RE

DCE (DE) shifted to Phase IMDCE (RE) shifted to Phase IM

Figure 1.4. Model structure for design phase (DE) [SRGR13b].

dustrial process. It demonstrates high potential in finding the appropriate amount
of review effort for specific development phases to minimize the overall costs.
Thus, the model may be used in the industry for decision support. By extend-
ing and calibrating it can be tailored to meet the needs of specific development
environment.

1.5. Model of a maturity capsule in software project management

1.6. Research context

Research conducted at the Center for Advanced Studies on Campus (CAS)
focuses on issues of software project management and on finding solutions to im-
prove management and development processes. The development methods used
in project management and in the development environment prove inadequate to
the problems of contemporary IT projects. It is therefore proposed that in project
management the development and management processes should be monitored
with the use of the innovative maturity capsule developed at CAS.

1.6.1. Research objectives

The main objective of the study was to define and apply in practice the matu-
rity capsule in IT projects. It was assumed that the concept of the maturity capsule
is to be understood as a set of maturity ratings of the supplier, client and project

30 Software Engineering from Research and Practice Perspectives

(estimated through the scalar negentropy of the project) [KO14a]. To define the
maturity capsule, it is necessary to establish the measurements of the maturity of
the client and the supplier and the project negentropy. The knowledge resulting
from the COBIT (Control Objectives for Information and Related Technology)
and ITIL (Information Technology Infrastructure Library) standards is important
for the initial processing of the project data, which aims at evaluating the maturity
of the supplier and client organizations in question. The TOGAF standard is used
mainly to evaluate a specific indicator, measuring the degree of global maturity of
a project, called negentropy. The applicability of the model is verified in a number
of environments, mainly in IT projects and in the organizations carrying out such
projects [KO14b].

1.6.2. Research methods

The description of the project management processes and information tech-
nologies was based on a formal, discrete - time-linear dynamic description ex-
panded with the essential nonlinear mechanisms in the form of a fuzzy - rule-based
system (with the use of a linguistic estimation developed on the basis of answers
given by experts to sets of questions in interview questionnaires). These descrip-
tions were used to develop a useful model based on a sequence of the following
three steps [SO14]:

1. the fuzzy modeling philosophy, based on the formation of the membership
function, is an appropriate foundation of the universality of the maturity cap-
sule.

2. the number of times of use is a relevant criterion for assessing the quality of
the developed model.

3. the tuning of the model becomes possible through the identification of its
parameters and variables (it is based on linguistic evaluations resulting from
competency questions).

1.6.3. Research results

The conducted studies demonstrated how the maturity capsule can be used by
those managing projects, by development teams and by customer teams in order
to support the processes inside the project in terms of monitoring and predicting
its development. Four levels of verification of the maturity capsule were proposed
[Orł14]. On the first one, the usefulness of the capsule for the managers of IT
projects was evaluated. On the second level, the support for processes which en-
sure corporate governance was referred to, as well as the use of project negentropy

Recent Polish achievements in Software Engineering 31

in supporting the management processes of a company. The third level focused on
the linguistic evaluation of supplier organization maturity in predicting its evolu-
tion. While, on the fourth level of ’control of the level of the client organization
and the processes of its change, a linguistic description was used to support this
evaluation.

1.6.4. Conclusions
In previous studies on project management processes, neither the analysis of

the state nor the maturity of the project was as comprehensive as this one. Both
elements have been included in the maturity capsule to predict and optimize infor-
mation technologies in managing information technology projects. The presented
analysis of the maturity capsule, the possibility to progress in terms of maturity,
and the monitoring of the level of management all allow for predicting technolo-
gies to support the desired changes in the maturity capsule. In this sense, the de-
veloped solution provides an innovative perspective on the management processes
of technologies and IT projects, involving the aggregation of knowledge about the
maturity of the entities in the capsule (client, project and supplier) and the de-
composition of information technologies into services and IT functionalities. The
solution described in this work, regarding a comprehensive evaluation of a project
and involving the use of the maturity capsule, requires indicating how frequent this
evaluation is and analyzing its applicability for the organization/teams of the client
and the supplier, which change dynamically during the project. In such cases, the
standard use of evaluation questionnaires may be inadequate. A better solution
would be to develop and apply a system in which specialized agents make the
assessment. The purpose of such a system would be to evaluate the environment
in which the IT project is carried out.

1.7. Conclusions

The contribution of Polish researchers to the software engineering research
field is limited. The percentage of research papers in the analyzed set of leading
software engineering journals and the time period (2010 – 2014 Sep 14) was about
0.6%. Fortunately, there are some valuable achievements of Polish researchers
which we tried to present briefly in this chapter.

It is also worth mentioning that we did not analyzed which research institu-
tions in Poland contribute the most as sometimes changing an affiliation of one or
two researchers would influence the results to a large extent.

32 Software Engineering from Research and Practice Perspectives

References

[Gla94] R. L. Glass. “An Assessment of Systems and Software Engineer-
ing Scholars and Institutions”. In: Journal of Systems and Soft-
ware 27.1 (Oct. 1994), pp. 63–67. ISSN: 0164-1212. DOI: 10 .
1016 / 0164 - 1212(94) 90115 - 5. URL: http : / / dx . doi . org / 10 .
1016/0164-1212(94)90115-5.

[WTGBC09] W. E. Wong, T. H. Tse, R. L. Glass, V. R. Basili, and T. Y. Chen.
“Controversy Corner: An Assessment of Systems and Software
Engineering Scholars and Institutions (2002-2006)”. In: Journal
of Systems and Software 82.8 (Aug. 2009), pp. 1370–1373. ISSN:
0164-1212. DOI: 10.1016/ j.jss.2009.06.018. URL: http:// dx.doi.
org/10.1016/ j.jss.2009.06.018.

[WTGBC11] W. E. Wong, T. Tse, R. L. Glass, V. R. Basili, and T. Chen. “An
assessment of systems and software engineering scholars and in-
stitutions (2003–2007 and 2004–2008)”. In: Journal of Systems
and Software 84.1 (2011). Information Networking and Software
Services, pp. 162 –168. ISSN: 0164-1212. DOI: http://dx.doi.org/
10.1016/ j.jss.2010.09.036. URL: http:// www.sciencedirect.com/
science/article/pii/S0164121210002682.

[Woh09] C. Wohlin. “An Analysis of the Most Cited Articles in Software
Engineering Journals - 2002”. In: Information and Software Tech-
nology 51.1 (Jan. 2009), pp. 2–6. ISSN: 0950-5849. DOI: 10.1016/
j.infsof.2008.09.012. URL: http:// dx.doi.org/ 10.1016/ j.infsof.
2008.09.012.

[Mad10] L. Madeyski. “The impact of test-first programming on branch
coverage and mutation score indicator of unit tests: An exper-
iment”. In: Information and Software Technology 52.2 (2010),
pp. 169–184. DOI: 10 . 1016 / j . infsof . 2009 . 08 . 007. URL: http :
//dx.doi.org/10.1016/ j.infsof.2009.08.007.

[ONK11] M. Ochodek, J. Nawrocki, and K. Kwarciak. “Simplifying Effort
Estimation Based on Use Case Points”. In: Information and Soft-
ware Technology 53.3 (Mar. 2011), pp. 200–213. ISSN: 0950-5849.
DOI: 10.1016/ j.infsof.2010.10.005. URL: http:// dx.doi.org/ 10.
1016/ j.infsof.2010.10.005.

[MR10] L. Madeyski and N. Radyk. “Judy – A Mutation Testing Tool
for Java”. In: IET Software Journal (formerly IEE Proceedings

Recent Polish achievements in Software Engineering 33

Software) 4.1 (2010). Draft: http:// madeyski.e- informatyka.pl/
download/ Madeyski10b.pdf , pp. 32–42. DOI: 10.1049/ iet- sen.
2008.0038. URL: http://dx.doi.org/10.1049/ iet-sen.2008.0038.

[JZ10a] A. Janik and K. Zielinski. “AAOP-based Dynamically Reconfig-
urable Monitoring System”. In: Information and Software Tech-
nology 52.4 (Apr. 2010), pp. 380–396. ISSN: 0950-5849. DOI:
10 . 1016 / j . infsof . 2009 . 10 . 006. URL: http : / / dx . doi . org / 10 .
1016/ j.infsof.2009.10.006.

[NK12] G. J. Nalepa and K. Kluza. “UML REPRESENTATION FOR
RULE-BASED APPLICATION MODELS WITH XTT2-BASED
BUSINESS RULES”. In: International Journal of Software En-
gineering and Knowledge Engineering 22.04 (2012), pp. 485–
524. DOI: 10 . 1142 / S021819401250012X. URL: http : / / www.
worldscientific.com/doi/abs/10.1142/S021819401250012X.

[Mił10] M. Miłkowski. “Developing an Open-source, Rule-based Proof-
reading Tool”. In: Software: Practice and Experience 40.7 (June
2010), pp. 543–566. ISSN: 0038-0644. DOI: 10.1002/ spe.v40:7.
URL: http://dx.doi.org/10.1002/spe.v40:7.

[JZ10b] A. Janik and K. Zielinski. “Adaptability Mechanisms for
Autonomic System Implementation with AAOP”. In: Software:
Practice and Experience 40.3 (Mar. 2010), pp. 209–223. ISSN:
0038-0644. DOI: 10.1002/ spe.v40:3. URL: http:// dx.doi.org/ 10.
1002/spe.v40:3.

[BBZ10] P. Bachara, K. Blachnicki, and K. Zielinski. “Framework for Ap-
plication Management with Dynamic Aspects J-EARS Case Study”.
In: Information and Software Technology 52.1 (Jan. 2010), pp. 67–
78. ISSN: 0950-5849. DOI: 10.1016/ j.infsof.2009.06.003. URL:
http://dx.doi.org/10.1016/ j.infsof.2009.06.003.

[Flo+10] J. Floch et al. “A Comprehensive Engineering Framework for
Guaranteeing Component Compatibility”. In: Journal of Systems
and Software 83.10 (Oct. 2010), pp. 1759–1779. ISSN: 0164-1212.
DOI: 10.1016/ j.jss.2010.04.075. URL: http://dx.doi.org/10.1016/
j.jss.2010.04.075.

[Deo10] S. Deorowicz. “Solving Longest Common Subsequence and Re-
lated Problems on Graphical Processing Units”. In: Software: Prac-
tice and Experience 40.8 (2010), pp. 673–700. ISSN: 0038-0644.

34 Software Engineering from Research and Practice Perspectives

DOI: 10.1002/ spe.v40:8. URL: http:// dx.doi.org/ 10.1002/ spe.
v40:8.

[ZK13] A. Zalewski and S. Kijas. “Beyond ATAM: Early Architecture
Evaluation Method for
Large-scale Distributed Systems”. In: Journal of Systems and Soft-
ware 86.3 (Mar. 2013), pp. 683–697. ISSN: 0164-1212. DOI: 10.
1016/ j.jss.2012.10.923. URL: http:// dx.doi.org/ 10.1016/ j.jss.
2012.10.923.

[ŁM12] K. Łukasiewicz and J. Miler. “Improving agility and discipline of
software development with the Scrum and CMMI”. In: Software,
IET 6.5 (2012), pp. 416–422. ISSN: 1751-8806. DOI: 10.1049/ iet-
sen.2011.0193.

[JKP12] M. Janicki, M. Katara, and T. Pääkkönen. “Obstacles and Oppor-
tunities in Deploying
Model-based GUI Testing of Mobile Software: A Survey”. In:
Software Testing, Verification and Reliability 22.5 (Aug. 2012),
pp. 313–341. ISSN: 0960-0833. DOI: 10.1002/stvr.460. URL: http:
//dx.doi.org/10.1002/stvr.460.

[OAJN11] M. Ochodek, B. Alchimowicz, J. Jurkiewicz, and J. Nawrocki.
“Improving the Reliability of Transaction Identification in Use
Cases”. In: Information and Software Technology 53.8 (2011),
pp. 885–897. ISSN: 0950-5849. DOI: 10.1016/ j.infsof.2011.02.
004. URL: http://dx.doi.org/10.1016/ j.infsof.2011.02.004.

[Hof11] R. Hofman. “Behavioral Economics in Software Quality Engi-
neering”. In: Empirical Software Engineering 16.2 (Apr. 2011),
pp. 278–293. ISSN: 1382-3256. DOI: 10.1007/s10664-010-9140-
x. URL: http://dx.doi.org/10.1007/s10664-010-9140-x.

[JNOG13a] J. Jurkiewicz, J. Nawrocki, M. Ochodek, and T. Głowacki. “HA-
ZOP based identification of events in use cases”. English. In: Em-
pirical Software Engineering (2013), pp. 1–28. ISSN: 1382-3256.
DOI: 10.1007/ s10664-013-9277-5. URL: http:// dx.doi.org/ 10.
1007/s10664-013-9277-5.

[RDDGM12] A. Riel, A. Draghici, G. Draghici, D. Grajewski, and R. Messnarz.
“Process and product innovation needs integrated engineering col-
laboration skills”. In: Journal of Software: Evolution and Process
24.5 (2012), pp. 551–560. ISSN: 2047-7481. DOI: 10.1002/ smr.
497. URL: http://dx.doi.org/10.1002/smr.497.

Recent Polish achievements in Software Engineering 35

[JS14] P. Janczarek and J. Sosnowski. “Investigating software testing and
maintenance reports: Case study”. In: Information and Software
Technology 0 (2014), pp. –. ISSN: 0950-5849. DOI: http : / / dx .
doi . org / 10 . 1016 / j . infsof . 2014 . 06 . 015. URL: http : / / www.
sciencedirect.com/science/article/pii/S0950584914001542.

[MJ14] L. Madeyski and M. Jureczko. “Which Process Metrics Can Sig-
nificantly Improve Defect Prediction Models? An Empirical Study”.
In: Software Quality Journal (accepted) (2014). DOI: 10 .1007 /
s11219-014-9241-7. URL: http:// dx.doi.org/ 10.1007/ s11219-
014-9241-7.

[MOTJ14] L. Madeyski, W. Orzeszyna, R. Torkar, and M. Józala. “Overcom-
ing the Equivalent Mutant Problem: A Systematic Literature Re-
view and a Comparative Experiment of Second Order Mutation”.
In: IEEE Transactions on Software Engineering 40.1 (2014), pp. 23–
42. ISSN: 0098-5589. DOI: 10 .1109 / TSE .2013 .44. URL: http :
//dx.doi.org/10.1109/TSE.2013.44.

[Sob14] J. Sobecki. “Comparison of Selected Swarm Intelligence Algo-
rithms in Student Courses Recommendation Application”. In: In-
ternational Journal of Software Engineering and Knowledge En-
gineering 24.01 (2014), pp. 91–109.

[CC13] B. Czarnacka-Chrobot. “RATIONALIZATION OF BUSINESS
SOFTWARE SYSTEMS DEVELOPMENT AND ENHANCE-
MENT PROJECTS INVESTMENT DECISIONS ON THE BA-
SIS OF FUNCTIONAL SIZE MEASUREMENT”. In: Interna-
tional Journal of Software Engineering and Knowledge Engineer-
ing 23.06 (2013), pp. 839–868. URL: http:// www.worldscientific.
com/doi/abs/10.1142/S0218194013500228.

[SRGR13a] T. Schulz, Ł. Radliński, T. Gorges, and W. Rosenstiel. “Predict-
ing the Flow of Defect Correction Effort using a Bayesian Net-
work Model”. English. In: Empirical Software Engineering 18.3
(2013), pp. 435–477. ISSN: 1382-3256. DOI: 10 .1007/ s10664-
011-9175-7. URL: http:// dx.doi.org/10.1007/ s10664-011-9175-
7.

[Kos13b] P. Kosiuczenko. “Specification of Invariability in OCL”. In: Soft-
ware and Systems Modeling 12.2 (May 2013), pp. 415–434. ISSN:
1619-1366. DOI: 10.1007/ s10270-011-0215-y. URL: http:// dx.
doi.org/10.1007/s10270-011-0215-y.

36 Software Engineering from Research and Practice Perspectives

[Ped13] W. Pedrycz. “KNOWLEDGE MANAGEMENT AND SEMAN-
TIC MODELING: A ROLE OF INFORMATION GRANULAR-
ITY”. In: International Journal of Software Engineering and Knowl-
edge Engineering 23.01 (2013), pp. 5–11. URL: http : / / www.
worldscientific.com/doi/abs/10.1142/S0218194013400019.

[JKN13] J. J. Jung, R. P. Katarzyniak, and N. T. Nguyen. “GUEST EDI-
TORS; INTRODUCTION”. In: International Journal of Software
Engineering and Knowledge Engineering 23.01 (2013), pp. 1–3.
DOI: 10.1142/S0218194013020014.

[KP13] R. P. Katarzyniak and G. Popek. “INTEGRATION OF MODAL
AND FUZZY METHODS OF KNOWLEDGE REPRESENTA-
TION IN ARTIFICIAL AGENTS”. In: International Journal of
Software Engineering and Knowledge Engineering 23.01 (2013),
pp. 13–29. DOI: 10.1142/S0218194013400020. URL: http://www.
worldscientific.com/doi/abs/10.1142/S0218194013400020.

[PŻZ13] M. Psiuk, D. Żmuda, and K. Zielinski. “Distributed OSGi Built
over Message-oriented Middleware”. In: Software: Practice and
Experience 43.1 (Jan. 2013), pp. 1–31. ISSN: 0038-0644. DOI: 10.
1002/spe.1148. URL: http://dx.doi.org/10.1002/spe.1148.

[JNOG13b] J. Jurkiewicz, J. Nawrocki, M. Ochodek, and T. Głowacki. “HA-
ZOP based identification of events in use cases”. In: Empirical
Software Engineering (2013), pp. 1–28.

[Mey88] B. Meyer. Object-oriented software construction. Prentice Hall
New York, 1988.

[OMG11] OMG. Unified Modeling Language, Spec. ver. 2.4.1. 2011.
[OMG12] OMG. Object Constraint Language, Spec. ver. 2.3.1. 2012.
[Sch90] L. Schubert. “Monotonic solution of the frame problem in the

situation calculus”. In: Knowledge representation and defeasible
reasoning. Springer, 1990, pp. 23–67.

[DM05] A. Darvas and P. Müller. “Reasoning about method calls in JML
specifications”. In: Proceedings of FTfJP’05. 2005.

[Kos13c] P. Kosiuczenko. “Specification of invariability in OCL, Specify-
ing invariable system parts and views”. In: Software & Systems
Modeling 12.2 (2013), pp. 415–434.

[Kos13a] P. Kosiuczenko. “On the Validation of Invariants at Runtime”. In:
Fundamenta Informaticae 125.2 (2013), pp. 183–222.

Recent Polish achievements in Software Engineering 37

[SRGR13b] T. Schulz, Ł. Radliński, T. Gorges, and W. Rosenstiel. “Predict-
ing the Flow of Defect Correction Effort using a Bayesian Net-
work Model”. English. In: Empirical Software Engineering 18.3
(2013), pp. 435–477. ISSN: 1382-3256. DOI: 10 .1007/ s10664-
011-9175-7. URL: http:// dx.doi.org/10.1007/ s10664-011-9175-
7.

[Ind92] Industrieanlagen-Betriebsgesellschaft (IABG). The V-Model —
General Directive 250. Software Development Standard for the
German Federal Armed Forces. Ottobrunn, Germany, 1992.

[SRGR11] T. Schulz, Ł. Radliński, T. Gorges, and W. Rosenstiel. “Software
Process Model using Dynamic Bayesian Networks”. In: Knowl-
edge Engineering for Software Development Life Cycles: Support
Technologies and Applications. Ed. by M. Ramachandran. Her-
shey: Information Science Reference, 2011, pp. 289–310. ISBN:
978-1-60960-509-4. DOI: 10.4018/978-1-60960-509-4.ch016.

[KO14a] Z. Kowalczuk and C. Orłowski. Advanced Modeling of Manage-
ment Processes in Information Technology. Springer, 2014, pp. 1–
203. ISBN: 978-3-642-40876-2.

[KO14b] Z. Kowalczuk and C. Orłowski. “Model of a Maturity Capsule in
Managing IT Projects”. In: Cybernetics and Systems 45.2 (2014),
pp. 123–135.

[SO14] E. Szczerbicki and C. Orłowski. “Guest Editorial: Designing and
Developing Smart Cognitive Systems: Implementation Lessons
from the Real World”. In: Cybernetics and Systems 45.2 (2014),
pp. 89–91.

[Orł14] C. Orłowski. “Rule-based model for selecting integration tech-
nologies for Smart Cities systems”. In: Cybernetics and Systems
45.2 (2014), pp. 136–145.

